
HeadCraft: Modeling High-Detail Shape Variations for Animated 3DMMs

Artem Sevastopolsky1 Philip-William Grassal2 Simon Giebenhain1

ShahRukh Athar3 Luisa Verdoliva4,1 Matthias Nießner1

1 Technical University of Munich (TUM), Germany 2 Copresence AG, Germany
3 Stony Brook University, US 4 University of Naples Federico II, Italy

Generative head model Fitting

3D Scans Dataset Parametric
template Random generations Depth

observation
Complete geometry

Figure 1. We present HeadCraft1, a generative model for highly-detailed human heads, ready for animation. Our method is trained on 2D

displacement maps collected by registering a parametric template head with free surface displacements to a large set of 3D head scans. The

resulting model is highly versatile, which can be demonstrated by fitting the latent code of the model to an arbitrary depth observation.

Abstract

Current advances in human head modeling allow to gen-

erate plausible-looking 3D head models via neural rep-

resentations. Nevertheless, constructing complete high-

fidelity head models with explicitly controlled animation re-

mains an issue. Furthermore, completing the head geom-

etry based on a partial observation, e.g. coming from a

depth sensor, while preserving details is often problematic

for the existing methods. We introduce a generative model

for detailed 3D head meshes on top of an articulated 3DMM

which allows explicit animation and high-detail preserva-

tion at the same time. Our method is trained in two stages.

First, we register a parametric head model with vertex dis-

placements to each mesh of the recently introduced NPHM

dataset of accurate 3D head scans. The estimated displace-

ments are baked into a hand-crafted UV layout. Second, we

train a StyleGAN model in order to generalize over the UV

maps of displacements. The decomposition of the paramet-

ric model and high-quality vertex displacements allows us

to animate the model and modify it semantically. We demon-

strate the results of unconditional generation and fitting to

the full or partial observation.

1. Introduction

The advent of neural representations, such as NeRFs (Neu-

ral Radiance Fields) [38] and SDFs (Signed Distance Func-

tions) [40], has revolutionized the field of 3D modeling

by enabling the generation of remarkably realistic 3D head

models. These models have found their applications in var-

ious domains, including computer graphics, virtual reality,

and digital entertainment. The ability to create lifelike 3D

head models is crucial for many applications, ranging from

video game character design to virtual try-on experiences

and medical simulations. While contemporary techniques

have made significant strides in achieving high-quality 3D

head models, a series of challenges persist, impeding the

seamless integration of these models into real-world appli-

cations. In particular, one of the primary challenges in the

realm of 3D head modeling lies in constructing a neural rep-

resentation amenable to animation and tracking, while pre-

serving enough detail.

In particular, recently introduced implicit generative

models for 3D, such as pi-GAN [14], EG3D [15], or

1Project page is available at https://seva100.github.io/

headcraft.

https://seva100.github.io/headcraft
https://seva100.github.io/headcraft

StyleSDF [39], fit the distribution of human faces with ex-

traordinary detail, and e.g. in [7, 16], the modeled region is

extended to the whole head. To introduce the animation ca-

pabilities, these methods require ad-hoc modifications such

as introducing deformations to canonical space [8] or driv-

ing the rendering by a semantic face mask [49, 56]. The

methods mostly focused on both modeling and controlling

the geometry are typically SDF-based and require learning

a separate latent space for expressions [60], oftentimes with

the aid of deformations [26, 61]. At the same time, ap-

proaches that fit a neural representation to a ”talking head”-

style video, enable explicit articulation by introducing the

parametric model guidance [27, 64, 65].

Inspired by the combination of these ideas, in this re-

search, we introduce a generative model that allows for an-

imation and tracking and preserves high level of detail. At

the heart of our approach lies the idea of combining an ex-

plicit parametric head model (FLAME [36]) with surface

displacements complementing the low geometry detail of

the head model. FLAME is an example of a 3D Morphable

Model [10, 20] with a fixed set of vertices and fixed topol-

ogy, constructed as a linear statistical model over the heads

with point-to-point correspondence and further controlled

by shape and expression latent codes. To obtain the neces-

sary training data, we register a highly subdivided FLAME

mesh template with free vertex displacements to all 3D head

scans in the NPHM [26] dataset. To facilitate as high level

of detail in the displacements as possible, they are fitted in

two steps. First, the optimization problem is solved for vec-

tor displacements with strong regularization that penalizes

very hard for self-intersections of the deformed mesh re-

gions. Afterwards, a separate optimization step refines the

displacements only along the normals of the deformed ver-

tices, while keeping the regularization weight low. These

displacements are baked into a predefined UV layout. Fi-

nally, we train a StyleGAN2 [31] model to generalize over

this set of baked 2D displacement maps. This novel archi-

tecture allows us to operate at a resolution higher than the

conventional FLAME template, enabling the generation of

highly detailed and animatable 3D head models.

To validate the efficacy and practical utility of our ap-

proach, we evaluate it in several settings. The diversity and

fidelity of the generated 3D head meshes is quantitatively

and visually compared to other methods w.r.t. the real head

scans from the FaceVerse dataset [55], both in UV space and

rendered image space. We also explore the applicability of

our approach in fitting the latent representation of the gener-

ative model to complete or incomplete point cloud data and

demonstrate its animation and manipulation capabilities.

Our contributions are as follows:

• We introduce a two-stage registration procedure to craft

high-detail displacement maps on top of 3DMMs from

3D scanning data.

• We propose a generative model over displacement maps

to not only enhance the low-frequency geometry of

FLAME with details but also extend its shape space to

all kinds of hairstyle variations.

• We demonstrate the versatility of our method through un-

conditional sampling, interpolation, semantic hair trans-

fer, and conditioning by depth map or a complete scan.

2. Related Work

Many recent solutions to computer vision problems in-

volving human bodies are built on statistical body models.

They are the foundation for building personalized avatars

[4, 5, 25, 27, 66], motion tracking [22, 51], scan registra-

tion [26], controlling image synthesis [50], and many more.

Their line of research divides into two major branches.

Mesh-based Models. Pioneering work in the field [10] pro-

posed 3D morphable models (3DMMs) for identity, expres-

sion, and appearance representation of human faces. Their

model is built around a 3D template mesh and linear para-

metric blendshapes derived from PCAs over scan data. With

new datasets and registration procedures, their work has

been extended from faces to heads [35, 36, 42], hands [46],

full-bodies [37], or combinations of these [41, 57]. The

template mesh has a fixed topology which provides con-

sistent UV unwrapping and enables fitting to know surface

correspondences, e.g. semantic regions and landmarks. Yet,

it limits the representative power w.r.t. the overall shape

and the level of detail beyond what is provided by the tem-

plate. Downstream approaches compensate this by optimiz-

ing displacements [4, 5, 12, 27, 32, 35, 59] or additional im-

plicit geometry [13, 23] on top of the mesh. Displacements

are applied either per-vertex individually [4, 5, 27, 32] or as

a displacement map over the whole surface using the consis-

tent UV unwrapping of the template [35, 59]. Our method

follows this idea by learning a generative model over dis-

placements maps while exploiting the animation model

and surface correspondences of the underlying 3DMM. We

demonstrate that learning displacements maps on top of a

highly-subdivided template allows to model fine details and,

compared to previous works, to introduce significant shape

variations.

Implicit Models. The recent success of implicit SDFs [40]

and neural radiance fields [38] in 3D modeling has also

motivated applying them for statistical body models. Most

implicit models learn shape and appearance in a canonical

reference space [6, 26, 29, 43, 60] or as displacements on

top of an existing model [61]. For better generalization and

detail preservation, some approaches use a composition of

implicit SDFs to model the canonical space [6, 26]. Artic-

ulation and animation is modelled either directly in canoni-

cal coordinates [29, 61], through implicit deformation fields

[26, 60], explicit joints [6] or blendshape deformations bor-

2

Registration

3D Scan FLAME
(N vertices)

vector
displacements

normal
displacements

UV offset map

Generalization

z code

Generator
network

FLAME
(N vertices)

FLAME
+ displacement

UV offset map

(a) (b) (c) (d)

(e)
mapping
network

w+ code

Figure 2. An overview of the method. In the registration stage, we (a) fit the FLAME template by the face landmarks to the scan from the

NPHM dataset and highly subdivide it, (b) optimize for the vertex displacements in R
3 to fit the rough geometry with strong regularizations,

(c) optimize for the scalar refinements of the displacements along the normal directions, and (d) bake the displacements into a UV offset

map.To generalize over the UV offset maps, we train a StyleGAN2 [31] model. After training, the offsets can be applied to an arbitrary

FLAME template by subdividing it and (e) querying the generated UV offset map with the (u, v) locations of the FLAME vertices.

rowed from explicit 3DMMs [56, 64]. While the afore-

mentioned methods rely on multi-view data and aligned 3D

scans, a separate line of research demonstrates that statis-

tical shape and appearance priors can also be learned from

unstructured image collections [14, 15, 39, 45, 67].

Implicit approaches do not rely on topology and shape

templates. This allows them to fit more detail and com-

plex shapes such as hair [26, 60, 61] and even glasses

[15, 39]. Yet, it prevents consistent surface correspon-

dences between different samples which need to be explic-

itly learned [6, 61]. As our approach uses a mesh-based

template, it does not suffer from these limitations and has

an explicit model for animation. Still, we are able to show

that we can provide a comparable level of detail as implicit

methods by learning high-resolution displacement maps on

top of a highly subdivided template topology.

3. Method

We describe the stages of our method in several parts. Sub-

sec. 3.1 describes the registration procedure for FLAME

with surface displacements. Subsec. 3.2 describes learn-

ing the generative model. The overview of the approach is

presented in Fig. 2.

3.1. Displacements registration procedure

The purpose of this step is to align the FLAME [36] head

template with displacements to each scan of the 3D human

head dataset. Let us consider a single scanned mesh P =
(V gt,Fgt) with vertices V gt ∈ R|V gt|×3, and faces Fgt ∈

R|Fgt|×3.

In order to find the appropriate FLAME parameters for

the scan, we follow the rigid alignment optimization proce-

dure outlined in the NPHM work [26]. This procedure re-

quires face landmarks to be known, which can be annotated

manually or, as provided with the dataset in our case, cal-

culated via 2D face landmark detectors on the projections

of the colored scans and lifted to 3D. This way, we obtain

a FLAME template, corresponding to the given scan, and

subdivide it via Butterfly algorithm [19]. We will refer to

the template after subdivision as to F = (V,F ,UF), where

V ∈ R|V |×3 are the vertices coordinates, F ∈ R|F|×3 are

the corresponding faces, and UF ∈ R|F|×3×2 are the tex-

ture coordinates of each vertex in a triangle. Note that using

triangle coordinates instead of vertex coordinates is impor-

tant due to the presence of a seam in the FLAME model,

thus making UVs for the seam vertices ambiguous.

As FLAME basis does not represent hair or face details,

we define these in a form of vertex displacements and learn

them in two stages. During the first stage, we optimize the

loss function LStage 1(D) for additive vector displacements

DStage 1 ∈ R
|V |×3 of the vertices:

L(D,V,F , V gt|λ) = λChamfer LChamfer(V +D,V gt)

+ λedge Ledge(V +D,F)

+ λlapl Llapl(V +D,F)

(1)

LStage 1(D) = L(D,V,F , V gt |λStage 1) (2)

Hyperparameters λStage 1 = (λChamfer
Stage 1 , λ

edge
Stage 1, λ

lapl
Stage 1)

define the Chamfer matching term weight, the weight of

edge length regularization and standard Laplacian regular-

ization. In this stage, the weight of regularizations is high

in order to prevent self-intersections that can occur when re-

gressing vector displacements. Also, we only optimize the

vector displacements for the hair region.

3

O
u

rs
N

P
H

M
[2

6
]

R
O

M
E

(l
in

ea
r)

[3
2
]

P
C

A
b

as
el

in
e

Figure 3. Visual comparison of fidelity and diversity of the meshes generated by various methods. For Ours, random FLAMEs are sampled

from Gaussian distribution with statistics calculated over the NPHM dataset; same for the PCA baseline pre-fitted to our UV registrations.

Meshes from NPHM are obtained by sampling the latent codes and running marching cubes over the generated SDF representations. We

demonstrate higher variability of produced head geometry and better details than the other methods. Electronic zoom-in recommended.

In the second stage, we optimize the loss function

LStage 2(α) for displacements DStage 2 ∈ R
|V |×3 that are

only allowed to move over the normals of the previously

displaced vertices:

DStage 2 = DStage 1 +N⊙α, (3)

where N ∈ R
|V |×3 corresponds to the normals, calcu-

lated by numerical difference for vertices deformed after the

Stage 1, and ⊙ defines the element-wise product of rows of

N and elements of α (each normal ni is multiplied by the

respective amplitude αi). LStage 2(α) is expressed through

the same basic loss expression:

LStage 2(α) = L(DStage 1+N⊙α, V,F , V gt |λStage 2), (4)

while hyperparameters λStage 2 are selected with relatively

lower regularization weights. This allows for fitting high-

frequency details while maintaining the same rough shape

of the regressed shape. At this stage, we allow both hair and

face regions to deform, while subtle parts such as ears and

eyeballs are fixed from moving.

Finally, we bake the displacements DStage 2 into a UV

map U ∈ R
H×W×3 by rendering it onto the UV space with

known texture coordinates UF and triangles F .

The registration procedure is repeated for the dataset

consisting of multiple 3D scans, resulting in a set of UV

displacement maps (U1, . . . , US).

3.2. Generative model

The described registration procedure allows us to relax the

problem of 3D head geometry generation into a problem of

generation of 2D UV displacement maps, which allows us

to apply a 2D generative model. We have selected Style-

GAN2 for that purpose due to its capability of general-

izing over relatively small datasets of images [1, 30, 63]

while maintaining close-to-SoTA image generation capabil-

ities [31]. The model consists of a mapping network and a

generator network, which we will refer to as f(z) together,

where z ∈ Z ⊂ R
D is a latent code sampled from a stan-

dard normal distribution during training. The generator pro-

duces a UV offset map U = f(z), which we can apply to

an arbitrary (anyhow densely subdivided) FLAME template

4

F = (V,F ,UF) by querying the map U with its texture co-

ordinates UF to obtain the respective vertex displacements.

We later demonstrate visually that the generated displace-

ments could be applied to an arbitrary FLAME template.

Figure 4. Comparison of the FLAME layouts. The standard, com-

monly used unwrapping for FLAME (left) features a seam corre-

sponding to the vertical line in the back of the head and pays more

attention to the facial region than to the scalp. In the hand-crafted

custom layout that we employ (right), a different seam around the

face border is selected, thus making the regions of face and scalp

separated and of similar size, which simplifies modeling complex

geometry such as long hair without breaks.

Post-processing. Since the UV map U is generated in the

UV layout that contains a seam, we expect StyleGAN to

resolve it in general, i.e. produce similar displacements in

the face and scalp region near the same seam vertex. Still,

there is no dedicated supervision during StyleGAN training

that ensures that it always happens and that the border is

preserved pixel-perfect. Because of that, before querying

the UV map U , we ensure the smoothness of the seam by

equalizing the displacements at its borders and blending the

displacements in the small vicinity inside and outside of it.

The sampling errors near the seam are fixed by filling in all

the empty space in the map with the displacements copied

from the nearest neighbor pixels in the valid regions.

4. Experiments

4.1. Training procedure

Our method is trained on the private version2 of the

NPHM [26] dataset, consisting of 6975 high-resolution

scans of 327 diverse identities captured by two 3D scanners.

For the registration procedure, we use Adam optimizer with

learning rate of 3 · 10−2 for the first stage and 3 · 10−4

for the second stage. The hyperparameters λStage 1 =

(λChamfer
Stage 1 , λ

edge
Stage 1, λ

lapl
Stage 1) equal to (2 ·103, 2 ·105, 104). For

the second stage, λStage 2 = (2 · 104, 2 · 104, 104). In the

Chamfer loss, we additionally apply correspondences prun-

ing by distance of 1.0, which defines that all the correspon-

dences between source and target with the distance more

than 1.0 in the NPHM coordinate system are automatically

discarded. This has been introduced for more consistent

gradual learning of displacements, such that at each opti-

mization step, only the nearest points affect the deformation

FID ↓ KID ↓ IS ↑ Rel. IS ↑ MMD ↓ JSD ↓ COV ↑

Ours 72.37 0.071 1.67 88.25% 6.45 21.41 47.12%

PCA 102.96 0.125 1.46 77.13% 9.96 20.68 22.12%

NPHM [26] 139.82 0.170 1.57 82.95% 7.80 19.06 46.15%

ROME [32] 169.65 0.204 1.63 86.81% 10.02 23.19 32.69%

FLAME [36] 198.85 0.262 1.13 59.86% 12.95 23.89 5.77%

Table 1. The comparison of quality and diversity of random sam-

ples generated by each of the methods. FID and KID measure the

similarity of the generated mesh renderings vs. the renderings of

the ground truth meshes in FaceVerse dataset, while IS measures

the realism of the generated renderings. 3D metrics MMD, JSD,

COV assess the similarity of point clouds sampled from generated

and ground truth meshes. For this and all other tables, MMD has

been multiplied by 103 and JSD is multiplied by 102.

learning.

For the generative model training, we use StyleGAN2

implementation with all augmentations turned off (since

they wouldn’t yield valid UV maps in our case), 8 map-

ping network layers and a high gradient penalty of 4.0. The

learning rates are 2 · 10−3 for the generator and 1 · 10−3 for

the discriminator. We train it for 72K steps with the batch

size of 8 and the resolution of the UV maps of 256× 256.

4.2. Results

Unconditional sampling. In Fig. 3, we compare the dif-

ference in details and diversity of the unconditional sam-

ples produced by our method to the ones produced by

NPHM [26] and ROME [32] methods. Additionally, we

compare it to the PCA baseline, whereas PCA linear basis

is fitted to our UV displacement maps, and provide the num-

bers for random FLAME samples without added displace-

ments as a reference. For Ours, PCA baseline and ROME, a

FLAME with random shape, expression and jaw parameters

are sampled from a Gaussian for every head mesh, in accor-

dance with the statistics precalculated over the NeRSem-

ble dataset [34]. While NPHM, PCA baseline, and Ours

have been fitted to exactly the same training dataset, for

ROME, the authors’ provided checkpoint has been used.

For ROME, we sample the FLAME displacements from a

linear model provided by the authors of ROME as the sam-

pling strategy proposed by the ROME authors. Visually, we

observe both higher diversity and better representation of

hair details than for all baselines. The details of the facial

region are generally the sharpest for ROME, PCA baseline,

and Ours, due to the use of the FLAME template.

In Table 1, we also quantify the level of detail and vari-

ety of the generated meshes w.r.t. the full head scans from

the FaceVerse dataset [55] that has not been used for train-

ing. The comparison is performed in two ways. Firstly,

2The private version was provided to us by the authors of NPHM [26]

and is going to be released to the public. The public version, available at

the time of the publication, is roughly a 30% subset of the private version.

5

to evaluate the visual plausibility of the generated geome-

try, we render 2195 ground truth meshes from FaceVerse

and the same number of meshes generated by each method

with highly metallic material from eight distinct viewpoints,

uniformly sampled along the circular trajectory in the hori-

zontal plane. The FID [28] and KID [9] perceptual metrics

are calculated for all generated and ground truth renderings

from a given viewpoint and then macro-averaged over eight

viewpoints. Inception Score (IS) [47] evaluated the realism

of the generated renderings. Because of that, we also report

the relative IS as a percentage of the reference IS calculated

for the ground truth renderings.

Secondly, we compare the distributions of point clouds

sampled from the generated and ground truth meshes. To do

that, we sample 10K points from each of the 2195 generated

and the same number of ground truth meshes and calculate

several 3D similarity metrics. Jensen-Shannon Divergence

(JSD) is evaluated by comparing the distributions of gen-

erated and ground truth points, splat into a voxel grid (in

our case, of 5123 voxels). Minimum Matching Distance

(MMD) is a measure of 3D object realism that, for each

ground truth sample, involves evaluating the distance to the

most similar sample in the generated set. Similarly, Cov-

erage (COV) indicates the percentage of the ground truth

samples, for which the nearest neighbor among all ground

truth and generated samples falls into the generated set. The

detailed mathematical description of each of the 3D met-

rics we report can be found in [21, 58]. In addition, we

demonstrate how much the generated samples deviate from

the NPHM training set in Fig. 5. The nearest neighbor scan

is found by comparing the generated UV map to the UV

maps comprised of registered ground truth displacements

for all training scans by L2 distance over the scalp region.

The results in Table 1 indicate that the renderings from

our method appear more realistic than of the other meth-

ods, with either PCA baseline or NPHM performing similar

according to different subsets of the metrics. Close promix-

ity to NPHM by MMD, COV, JSD could be explained by

training on exactly the same dataset.

Ablating over the choice of the UV layout. We assess the

effect of a manually hand-crafted UV space for FLAME

on the quality of generations in Fig. 6. As observed, mov-

ing the seam from the vertical middle line, as in the stan-

dard UV layout for FLAME, to the face border, allows us to

model more consistent and complex geometry without large

distinction between a left and a right part.

Ablating over the choice of the generative model archi-

tecture. We compare StyleGAN to other state-of-the-art

generative model architectures, namely of VAE [33] and

VQ-VAE [53] family, with ResNet-18 encoder and decoder.

For VQ-VAE, the sampling from the latent space is imple-

mented via training PixelCNN autoregressive model [52].

The results are presented in Table 2 and in Fig. 7.

Generated Nearest Generated Nearest

Figure 5. Randomly generated samples from HeadCraft and the

corresponding nearest neighbors in the NPHM dataset among the

scans used for training.

S
ta

n
d

ar
d

U
V

C
u

st
o

m
U

V

Figure 6. Ablation over the choice of the UV layout. Our method

utilizes custom UV layout that allows us to model more consistent

geometry by mitigating seam artifacts, as seen from the back view

here. Layouts are shown in Fig. 4.

FID ↓ KID ↓ IS ↑ Rel. IS ↑ MMD ↓ JSD ↓ COV ↑

Ours 72.37 0.07 1.67 88.25% 6.45 21.41 47.12%

VAE [33] 108.91 0.13 1.66 87.79% 6.79 21.65 42.31%

VQ-VAE [53] 125.65 0.15 1.62 85.94% 7.96 21.88 38.46%

PCA 102.96 0.13 1.46 77.13% 9.96 20.68 22.12%

Table 2. Ablation over the generative model design. VAE and

VQ-VAE follow the ResNet-18 encoder and decoder architecture,

while Ours is based on StyleGAN2. We also include PCA baseline

scores here as a reference.

Behavior of the registration procedure. In Fig. 10, we

demonstrate the advantage of the two-stage registration pro-

cedure, described in Subsec. 3.1, over omitting one of the

stages. As can be seen, keeping only the vector displace-

6

ment optimization results in too rough shape, and relax-

ing the regularization constraints yields significant artifacts

such as self-intersections and spikes. Running the nor-

mal displacement stage without any preliminary vector dis-

placement stage performs similarly to our two-stage proce-

dure but produces artifacts for long hair that does not triv-

ially project onto the surface. In turn, it can produce the

mappings between template vertices and scan vertices, in-

consistent across various samples for the long hair parts.

4.3. Applications

Fitting the latent code to a depth map. Our model can act

as a prior for completing the partial observations, e.g. when

they come from a depth sensor. To evaluate the performance

of the model in that scenario, we demonstrate the comple-

tion capabilities of the model over a number of scans from

NPHM corresponding to the subjects unseen during train-

ing. For each of these scans, we project their depth onto

random viewpoints in the frontal hemisphere and project it

back to 3D to construct partial point clouds. To obtain a

partial UV map to be completed, we run our registration

procedure with a few modifications to fit a part of the scan.

Namely, we only fit the points within the convex hull of the

partial point cloud, apply stronger edge length regulariza-

tion weight, and constrain the points at the border of the

allowed region from moving. The final mask of observed

UV texels is refined by only selecting those points that turn

out to be close to the partial point cloud. Finally, a latent

code of HeadCraft explaining the partial UV map is found

via StyleGAN inversion techniques. More technical details

of the partial registration and inversion are provided in the

Supplementary [3]. The fitting quality can be evaluated by

the visual comparison in Fig. 8.

VAE VQ-VAE

Figure 7. Ablation over the generative model design. VAE and

VQ-VAE both follow the ResNet-18 encoder and decoder archi-

tecture, while our method is based on StyleGAN2. The results

from VAE and VQ-VAE match the diversity of the training data

but not the level of detail and handle the UV seam worse.

The capabilities of fitting the model to the full scan,

e.g. created from Structure-from-Motion (SfM), are demon-

strated as a part of the semantic editing experiments in

Fig. 11 (top rows, the result of the latent fitting to each of

the scans, λ = {0, 1}).

Animation. The decomposition of the parametric model

Figure 9. Demonstration of the animation capabilities of the

model. Each of the sequences is created by taking FLAME shape

parameters, expression, jaw, and head pose parameters from a se-

quence from NeRSemble dataset [34], subdividing the template,

and applying randomly generated displacements from HeadCraft.

and the displacements allows us to animate the complete

head model. In our experiments, we take real multi-view

video sequences with talking people from the NeRSemble

dataset [34] and obtain shape, expression, jaw, and head

pose parameters for each time frame of the speech by run-

ning a FLAME tracker for each sequence. For each of the

sample shapes, estimated from the sequences, we reenact

the corresponding FLAME with estimated expression pa-

rameters, subdivide the template and query a randomly pre-

sampled UV displacement map from HeadCraft. Since the

template is also deforming over time, we rotate the displace-

ments according to the changing surface normals of the tem-

plate. More results are demonstrated in Fig. 9 and in the

Supplementary Video.

4.4. Analysis

Interpolation between the displacements. In Fig. 11, we

show how interpolating the latent code of our generative

model influences the change of the geometry. Further inter-

polations are presented in the Supplementary Video.

Hair transfer from one scan to another. Access to the

shared UV space allows us to modify the geometry seman-

tically. In Fig. 11, the transfer of the scalp region from

one ground truth NPHM scan, unseen during training, to

the other is shown. The transfer is performed via fitting the

latent representation of HeadCraft to the driver scan (the

source of displacements) and feeding it to the model. The

extracted displacements are later applied to the source scan.

7

Depth Completion Ground truth Depth Completion Ground truth

Depth Ours NPHM Gr. truth Depth Ours NPHM Gr. truth

Figure 8. Demonstration of geometry completion aided by the HeadCraft model. Here, we extract depth maps from scans from the NPHM

dataset, unseen during training, and try to complete them by finding the appropriate latent representation of StyleGAN. As a necessary

intermediate step, we first apply our registration procedure to the partial point cloud to locate the points in the UV space of the template.

The optimal latent is found by minimizing the discrepancy of the complete UV map and registered partial UV map in the observed regions.

HeadCraft is also capable of estimating plausible details for a very sparse point cloud (1% of # points) – see the last row.

(a) Stage 1 (b) Stage 2 (c) Stage 1, (d) Ours

only only λ = λStage 2

Figure 10. Ablation over the one-stage vs. two-stage registration.

Leaving only the vector displacements stage (a) yields too smooth

geometry, and learning them only along the normals (b) introduces

unnecessary spikes – just like running the first stage with weaker

regularization (c).

5. Discussion

In this work, a generative model for 3D human heads is pre-

sented. We demonstrate the efficacy of the hybrid approach

involving an underlying animatable parametric model and

a neural vertex displacement modeller. Most importantly,

our method allows to model high-quality shape variations

while maintaining the realistic animation capability, and the

inversion framework allows us to find a suitable latent rep-

resentation to either represent a full head scan or a part of it

that could come from e.g. the depth sensor. A direction of

the possible future work could be focused on incorporating

Interpolation

parametric
template

driving
person

Figure 11. Semantic editing. Interpolating the latent represen-

tations of HeadCraft allows us to smoothly change the person’s

appearance from one to another. To do that, we fit the latent codes

for two real scans in the NPHM dataset (brown, top rows), unseen

during training, and blend them together with a λ weight. Like-

wise, we can transfer hair geometry from one person to another.

an appearance model for color and material-based relight-

ing and a physical model of hair movement, based on, for

instance, hair strands, to support more realistic animation.

8

Acknowledgments. We gratefully acknowledge the sup-

port of this research by a TUM-IAS Hans Fischer Senior

Fellowship, the ERC Starting Grant Scan2CAD (804724)

and the Horizon Europe vera.ai project (101070093). We

also thank Yawar Siddiqui and Alexey Artemov for help-

ful advice, Tobias Kirschstein for his assistance with the

NeRSembles dataset and visualization, Taras Khakhulin for

his help with the ROME baseline, Peter Kocsis, Antonio Al-

legro, Jiapeng Tang for early peer review, Silvia Sellán for

the Blender visualization course materials that we used, and

Angela Dai for the video voiceover.

References

[1] GitHub: Awesome Pretrained Stylegan by justinpinkney.

A collection of pre-trained StyleGAN models trained

on different datasets at different resolution. https:

/ / github . com / justinpinkney / awesome -

pretrained-stylegan. 4

[2] Learn OpenGL – Normal Mapping. https :

/ / learnopengl . com / Advanced - Lighting /

Normal-Mapping. 16

[3] HeadCraft: Modeling High-Detail Shape Variations for Ani-

mated 3DMMs. Supplementary Material. 7

[4] Thiemo Alldieck, Marcus Magnor, Weipeng Xu, Christian

Theobalt, and Gerard Pons-Moll. Detailed human avatars

from monocular video. In 2018 International Conference on

3D Vision (3DV), pages 98–109. IEEE, 2018. 2

[5] Thiemo Alldieck, Marcus Magnor, Bharat Lal Bhatnagar,

Christian Theobalt, and Gerard Pons-Moll. Learning to re-

construct people in clothing from a single rgb camera. In

Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pages 1175–1186, 2019. 2

[6] Thiemo Alldieck, Hongyi Xu, and Cristian Sminchisescu.

imGHUM: Implicit generative models of 3D human shape

and articulated pose. In Proceedings of the IEEE/CVF Inter-

national Conference on Computer Vision, pages 5461–5470,

2021. 2, 3

[7] Sizhe An, Hongyi Xu, Yichun Shi, Guoxian Song, Umit

Ogras, and Linjie Luo. Panohead: Geometry-aware 3d full-

head synthesis in 360. arXiv preprint arXiv:2303.13071,

2023. 2

[8] Alexander Bergman, Petr Kellnhofer, Wang Yifan, Eric

Chan, David Lindell, and Gordon Wetzstein. Generative neu-

ral articulated radiance fields. Advances in Neural Informa-

tion Processing Systems, 35:19900–19916, 2022. 2

[9] Mikołaj Bińkowski, Danica J Sutherland, Michael Arbel, and

Arthur Gretton. Demystifying mmd gans. arXiv preprint

arXiv:1801.01401, 2018. 6

[10] Volker Blanz and Thomas Vetter. A Morphable Model for the

Synthesis of 3D faces. In Proceedings of the 26th Annual

Conference on Computer Graphics and Interactive Tech-

niques, page 187–194. ACM Press/Addison-Wesley Publish-

ing Co., 1999. 2

[11] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large

scale gan training for high fidelity natural image synthesis.

arXiv preprint arXiv:1809.11096, 2018. 13

[12] Andrei Burov, Matthias Nießner, and Justus Thies. Dynamic

surface function networks for clothed human bodies. In

Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 10754–10764, 2021. 2

[13] Chen Cao, Tomas Simon, Jin Kyu Kim, Gabe Schwartz,

Michael Zollhoefer, Shun-Suke Saito, Stephen Lombardi,

Shih-En Wei, Danielle Belko, Shoou-I Yu, et al. Authen-

tic volumetric avatars from a phone scan. ACM Transactions

on Graphics (TOG), 41(4):1–19, 2022. 2

[14] Eric R Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu,

and Gordon Wetzstein. pi-GAN: Periodic implicit genera-

tive adversarial networks for 3d-aware image synthesis. In

Proceedings of the IEEE/CVF conference on computer vi-

sion and pattern recognition, pages 5799–5809, 2021. 1, 3

[15] Eric R Chan, Connor Z Lin, Matthew A Chan, Koki Nagano,

Boxiao Pan, Shalini De Mello, Orazio Gallo, Leonidas J

Guibas, Jonathan Tremblay, Sameh Khamis, et al. Efficient

geometry-aware 3D generative adversarial networks. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 16123–16133, 2022. 1, 3

[16] Yuhao Cheng, Yichao Yan, Wenhan Zhu, Ye Pan, Bowen

Pan, and Xiaokang Yang. Head3d: Complete 3d head

generation via tri-plane feature distillation. arXiv preprint

arXiv:2303.15892, 2023. 2

[17] Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Mat-

teo Dellepiane, Fabio Ganovelli, and Guido Ranzuglia.

MeshLab: an Open-Source Mesh Processing Tool. In Euro-

graphics Italian Chapter Conference. The Eurographics As-

sociation, 2008. 12

[18] Blender Online Community. Blender - a 3D modelling and

rendering package. Blender Foundation, Stichting Blender

Foundation, Amsterdam, 2018. 12

[19] Nira Dyn, David Levine, and John A Gregory. A butter-

fly subdivision scheme for surface interpolation with tension

control. ACM transactions on Graphics (TOG), 9(2):160–

169, 1990. 3

[20] Bernhard Egger, William AP Smith, Ayush Tewari, Stefanie

Wuhrer, Michael Zollhoefer, Thabo Beeler, Florian Bernard,

Timo Bolkart, Adam Kortylewski, Sami Romdhani, et al.

3d morphable face models—past, present, and future. ACM

Transactions on Graphics (ToG), 39(5):1–38, 2020. 2

[21] Ziya Erkoç, Fangchang Ma, Qi Shan, Matthias Nießner,

and Angela Dai. HyperDiffusion: Generating implicit

neural fields with weight-space diffusion. arXiv preprint

arXiv:2303.17015, 2023. 6

[22] Yao Feng, Haiwen Feng, Michael J Black, and Timo Bolkart.

Learning an animatable detailed 3d face model from in-the-

wild images. ACM Transactions on Graphics (ToG), 40(4):

1–13, 2021. 2

[23] Yao Feng, Weiyang Liu, Timo Bolkart, Jinlong Yang, Marc

Pollefeys, and Michael J. Black. Learning disentangled

avatars with hybrid 3d representations. arXiv, 2023. 2

[24] Steven Fortune. Voronoi diagrams and delaunay triangula-

tions. In Handbook of discrete and computational geometry,

pages 705–721. Chapman and Hall/CRC, 2017. 13

[25] Guy Gafni, Justus Thies, Michael Zollhöfer, and Matthias

Nießner. Dynamic neural radiance fields for monocular 4d

9

https://github.com/justinpinkney/awesome-pretrained-stylegan
https://github.com/justinpinkney/awesome-pretrained-stylegan
https://github.com/justinpinkney/awesome-pretrained-stylegan
https://learnopengl.com/Advanced-Lighting/Normal-Mapping
https://learnopengl.com/Advanced-Lighting/Normal-Mapping
https://learnopengl.com/Advanced-Lighting/Normal-Mapping

facial avatar reconstruction. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 8649–8658, 2021. 2

[26] Simon Giebenhain, Tobias Kirschstein, Markos Georgopou-

los, Martin Rünz, Lourdes Agapito, and Matthias Nießner.

Learning neural parametric head models. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 21003–21012, 2023. 2, 3, 4, 5

[27] Philip-William Grassal, Malte Prinzler, Titus Leistner,

Carsten Rother, Matthias Nießner, and Justus Thies. Neural

head avatars from monocular rgb videos. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 18653–18664, 2022. 2

[28] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,

Bernhard Nessler, and Sepp Hochreiter. GANs trained by

a two time-scale update rule converge to a local nash equi-

librium. Advances in neural information processing systems,

30, 2017. 6

[29] Yang Hong, Bo Peng, Haiyao Xiao, Ligang Liu, and Juy-

ong Zhang. Headnerf: A real-time nerf-based parametric

head model. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 20374–

20384, 2022. 2

[30] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine,

Jaakko Lehtinen, and Timo Aila. Training generative adver-

sarial networks with limited data. Advances in neural infor-

mation processing systems, 33:12104–12114, 2020. 4

[31] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,

Jaakko Lehtinen, and Timo Aila. Analyzing and improv-

ing the image quality of stylegan. In Proceedings of

the IEEE/CVF conference on computer vision and pattern

recognition, pages 8110–8119, 2020. 2, 3, 4

[32] Taras Khakhulin, Vanessa Sklyarova, Victor Lempitsky, and

Egor Zakharov. Realistic one-shot mesh-based head avatars.

In European Conference on Computer Vision, pages 345–

362. Springer, 2022. 2, 4, 5

[33] Diederik P Kingma, Max Welling, et al. An introduction to

variational autoencoders. Foundations and Trends® in Ma-

chine Learning, 12(4):307–392, 2019. 6

[34] Tobias Kirschstein, Shenhan Qian, Simon Giebenhain, Tim

Walter, and Matthias Nießner. NeRSemble: Multi-view Ra-

diance Field Reconstruction of Human Heads. arXiv preprint

arXiv:2305.03027, 2023. 5, 7

[35] Ruilong Li, Karl Bladin, Yajie Zhao, Chinmay Chinara,

Owen Ingraham, Pengda Xiang, Xinglei Ren, Pratusha

Prasad, Bipin Kishore, Jun Xing, et al. Learning forma-

tion of physically-based face attributes. In Proceedings of

the IEEE/CVF conference on computer vision and pattern

recognition, pages 3410–3419, 2020. 2

[36] Tianye Li, Timo Bolkart, Michael J Black, Hao Li, and Javier

Romero. Learning a model of facial shape and expression

from 4D scans. ACM Trans. Graph., 36(6):194–1, 2017. 2,

3, 5, 12

[37] Matthew Loper, Naureen Mahmood, Javier Romero, Ger-

ard Pons-Moll, and Michael J. Black. SMPL: A skinned

multi-person linear model. ACM Trans. Graphics (Proc.

SIGGRAPH Asia), 34(6):248:1–248:16, 2015. 2

[38] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,

Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:

Representing Scenes as Neural Radiance Fields for View

Synthesis. CoRR, abs/2003.08934, 2020. 1, 2

[39] Roy Or-El, Xuan Luo, Mengyi Shan, Eli Shecht-

man, Jeong Joon Park, and Ira Kemelmacher-Shlizerman.

Stylesdf: High-resolution 3d-consistent image and geome-

try generation. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 13503–

13513, 2022. 2, 3

[40] Jeong Joon Park, Peter Florence, Julian Straub, Richard

Newcombe, and Steven Lovegrove. DeepSDF: Learning

continuous signed distance functions for shape representa-

tion. In Proceedings of the IEEE/CVF conference on com-

puter vision and pattern recognition, pages 165–174, 2019.

1, 2

[41] Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani,

Timo Bolkart, Ahmed A. A. Osman, Dimitrios Tzionas, and

Michael J. Black. Expressive body capture: 3D hands, face,

and body from a single image. In Proceedings IEEE Conf.

on Computer Vision and Pattern Recognition (CVPR), pages

10975–10985, 2019. 2

[42] Stylianos Ploumpis, Evangelos Ververas, Eimear O’Sullivan,

Stylianos Moschoglou, Haoyang Wang, Nick Pears,

William AP Smith, Baris Gecer, and Stefanos Zafeiriou. To-

wards a complete 3d morphable model of the human head.

IEEE transactions on pattern analysis and machine intelli-

gence, 43(11):4142–4160, 2020. 2

[43] Eduard Ramon, Gil Triginer, Janna Escur, Albert Pumarola,

Jaime Garcia, Xavier Giro-i Nieto, and Francesc Moreno-

Noguer. H3d-net: Few-shot high-fidelity 3d head reconstruc-

tion. In Proceedings of the IEEE/CVF International Confer-

ence on Computer Vision, pages 5620–5629, 2021. 2

[44] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Tay-

lor Gordon, Wan-Yen Lo, Justin Johnson, and Georgia

Gkioxari. Accelerating 3d deep learning with pytorch3d.

arXiv:2007.08501, 2020. 12

[45] Daniel Rebain, Mark Matthews, Kwang Moo Yi, Dmitry La-

gun, and Andrea Tagliasacchi. Lolnerf: Learn from one look.

In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 1558–1567, 2022. 3

[46] Javier Romero, Dimitrios Tzionas, and Michael J. Black.

Embodied hands: Modeling and capturing hands and bod-

ies together. ACM Transactions on Graphics, (Proc. SIG-

GRAPH Asia), 36(6), 2017. 2

[47] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki

Cheung, Alec Radford, and Xi Chen. Improved techniques

for training gans. Advances in neural information processing

systems, 29, 2016. 6

[48] Tilo Strutz. The distance transform and its computation.

arXiv preprint arXiv:2106.03503, 2021. 13

[49] Junshu Tang, Bo Zhang, Binxin Yang, Ting Zhang, Dong

Chen, Lizhuang Ma, and Fang Wen. Explicitly con-

trollable 3D-aware portrait generation. arXiv preprint

arXiv:2209.05434, 2022. 2

[50] Ayush Tewari, Mohamed Elgharib, Gaurav Bharaj, Florian

Bernard, Hans-Peter Seidel, Patrick Pérez, Michael Zoll-

10

hofer, and Christian Theobalt. Stylerig: Rigging style-

gan for 3d control over portrait images. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 6142–6151, 2020. 2

[51] Justus Thies, Michael Zollhofer, Marc Stamminger, Chris-

tian Theobalt, and Matthias Nießner. Face2face: Real-time

face capture and reenactment of rgb videos. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 2387–2395, 2016. 2

[52] Aäron Van Den Oord, Nal Kalchbrenner, and Koray

Kavukcuoglu. Pixel recurrent neural networks. In Interna-

tional conference on machine learning, pages 1747–1756.

PMLR, 2016. 6

[53] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete

representation learning. Advances in neural information pro-

cessing systems, 30, 2017. 6

[54] Jörg Vollmer, Robert Mencl, and Heinrich Mueller. Im-

proved laplacian smoothing of noisy surface meshes. In

Computer graphics forum, pages 131–138. Wiley Online Li-

brary, 1999. 16

[55] Lizhen Wang, Zhiyuan Chen, Tao Yu, Chenguang Ma, Liang

Li, and Yebin Liu. Faceverse: a fine-grained and detail-

controllable 3D face morphable model from a hybrid dataset.

In Proceedings of the IEEE/CVF conference on computer vi-

sion and pattern recognition, pages 20333–20342, 2022. 2,

5

[56] Yue Wu, Yu Deng, Jiaolong Yang, Fangyun Wei, Qifeng

Chen, and Xin Tong. Anifacegan: Animatable 3d-aware face

image generation for video avatars. Advances in Neural In-

formation Processing Systems, 35:36188–36201, 2022. 2,

3

[57] Hongyi Xu, Eduard Gabriel Bazavan, Andrei Zanfir,

William T. Freeman, Rahul Sukthankar, and Cristian Smin-

chisescu. Ghum & ghuml: Generative 3d human shape and

articulated pose models. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition

(CVPR), 2020. 2

[58] Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge

Belongie, and Bharath Hariharan. Pointflow: 3D point cloud

generation with continuous normalizing flows. In Proceed-

ings of the IEEE/CVF international conference on computer

vision, pages 4541–4550, 2019. 6, 13

[59] Haotian Yang, Hao Zhu, Yanru Wang, Mingkai Huang, Qiu

Shen, Ruigang Yang, and Xun Cao. Facescape: a large-scale

high quality 3d face dataset and detailed riggable 3d face pre-

diction. In Proceedings of the ieee/cvf conference on com-

puter vision and pattern recognition, pages 601–610, 2020.

2

[60] Tarun Yenamandra, Ayush Tewari, Florian Bernard, Hans-

Peter Seidel, Mohamed Elgharib, Daniel Cremers, and

Christian Theobalt. i3DMM: Deep implicit 3D morphable

model of human heads. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 12803–12813, 2021. 2, 3

[61] Mihai Zanfir, Thiemo Alldieck, and Cristian Sminchis-

escu. PhoMoH: Implicit Photorealistic 3D Models of Human

Heads. arXiv preprint arXiv:2212.07275, 2022. 2, 3

[62] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-

man, and Oliver Wang. The unreasonable effectiveness of

deep features as a perceptual metric. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 586–595, 2018. 14

[63] Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song

Han. Differentiable augmentation for data-efficient gan

training. Advances in neural information processing systems,

33:7559–7570, 2020. 4

[64] Yufeng Zheng, Victoria Fernández Abrevaya, Marcel C

Bühler, Xu Chen, Michael J Black, and Otmar Hilliges. I

M Avatar: Implicit morphable head avatars from videos. In

Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pages 13545–13555, 2022. 2,

3

[65] Yufeng Zheng, Wang Yifan, Gordon Wetzstein, Michael J

Black, and Otmar Hilliges. PointAvatar: Deformable point-

based head avatars from videos. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 21057–21067, 2023. 2

[66] Wojciech Zielonka, Timo Bolkart, and Justus Thies. Instant

volumetric head avatars. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 4574–4584, 2023. 2

[67] Jinlong Yang Michael J.Black Otmar Hilliges An-

dreas Geiger Zijian Dong, Xu Chen. AG3D: Learning

to generate 3D avatars from 2D image collections. In

International Conference on Computer Vision (ICCV), 2023.

3

11

A. Method: Technical Details

A.1. Displacement registration procedure

Here we explain the procedure in more detail. The vertices

and displacements are modeled in the NPHM coordinate

system, aligned with the scans, and the scaling of 30× ap-

plied. The implementation of Butterfly subdivision of the

FLAME template from MeshLab [17] was used. The pa-

rameters of the subdivision are constant across the scans

and equal to 3 subdivision iterations with a threshold of

42.5. The subdivision produces around 100K vertices and

200K triangles for the original template consisting of 5023

vertices and 9976 triangles and smooths the surface. The

description of the optimization problem features individ-

ual loss terms. The expanded expression for the terms are

as follows. The Chamfer term LChamfer(P1, P2) quantifies

the distance between the point clouds P1 ∈ R
|P1|×3 and

P2 ∈ R
|P2|×3 is supposed to be differentiable w.r.t. the

points of P1. In our work, we apply the version pruned

by the distance of the correspondences, i.e. when the Eu-

clidean distance between point and its matched version ex-

ceeds the predefined threshold d, this correspondence is not

accounted in the loss term.

LChamfer(P1, P2) =

1∑
p∈P1

[d(p, nn(p, P2)) ≤ d]
·

·
∑

p∈P1

(d(p, nn(p, P2)) · [d(p, nn(p, P2)) ≤ d])

+
1∑

p∈P2
[d(p, nn(p, P1)) ≤ d]

·

·
∑

p∈P2

(d(p, nn(p, P1)) · [d(p, nn(p, P1)) ≤ d]) ,

where d(·, ·) stands for the Euclidean distance between two

points in space and nn(p, P) = argmin
p′∈P

d(p, p′) is the near-

est neighbor of p in a point cloud P .

Edge length regularization is defined as follows.

Ledge(V,F) =
1

|E|

∑

(ea,eb)∈E

d2(Vea , Veb), (5)

where E = E(F) is a set of graph edges derived from the

faces F . To construct it, we consider each face bringing

three new edges and later leave only the unique edges in E.

Laplacian term is defined as the Euclidean distance be-

tween the vertex and its neighbors, which can be efficiently

calculated via computing sparse Laplacian L = L(V,F) of

the graph:

Llapl(V,F) =

√

∑

v∈V

‖Lv‖22 (6)

The outer norm is used instead of e.g. L1 averaging

to enforce the uniform smoothness of the mesh and avoid

spikes that tend to appear otherwise (see, e.g., the docu-

mented example in PyTorch3D [44] repository).

During the vector displacement stage, only the scalp

region (defined by the semantic mask shipped with

FLAME [36]) is optimized. During the normal displace-

ment stage, we also unfreeze the facial region but keep the

neck, eyeballs, ears and inner mouth region frozen (the lat-

ter is annotated manually in Blender [18] package and is

frozen because of its absence in the ground truth scans, as it

is placed fully interior). Each stage takes around 3 min for

1K steps on a single NVIDIA RTX 2080 Ti GPU. We used

the PyTorch3D [44] functions for implementation of all the

loss terms.

In Fig. 12, we show how the seam was annotated for the

custom UV layout. The Blender [18] 4.0 package was used

for annotation.

Standard UV Custom UV

Figure 12. Demonstration of the custom UV seam annotation.

Standard UV corresponds to the UV space shipped with the

FLAME model. Custom UV stands for the handcrafted layout em-

ployed in our pipeline. This layout simplifies learning sophisti-

cated shape variations such as long hair in a consistent way.

The displacement vectors entries typically belong to the

[-2, +2] range, while some large shape variations (e.g. a

pony tail) can introduce the offsets into a large range up to

[-20, +20]. We clip any displacements, obtained after full

registration, to the [-20, +20] range. As the last step, the dis-

placements are rendered in UV space, and each UV map is

saved as uint16 image files linearly renormalized from [-20,

+20] to [0, 216 − 1]. Saving in uint16 (double-byte inten-

sity value) instead of the widely used uint8 (single-byte in-

tensity value) is important, since most of the displacements

vector entries are concentrated around the small neighbor-

hood of zero and the precision can be lost when renormal-

12

https://github.com/facebookresearch/pytorch3d/issues/432

izing from [-20, +20] to [0, 28 − 1] instead and discretiz-

ing. Saving UV maps as raw files would otherwise facili-

tate much slower training of the generative model due to the

time-consuming loading and memory usage overhead.

A.2. Generative model

For training StyleGAN, we used the stylegan2-ada-

lightning implementation with ADA and augmentations

turned off and the following hyperparameters:

latent dim # layers (z → w) G lr D lr

512 8 0.002 0.001

λgp λplp img size batch size

4.0 2.0 256× 256 8

The model was trained on four NVIDIA RTX 2080 Ti

GPUs. For training of the StyleGAN, we replaced the facial

part of the registered UV maps of subjects in the NPHM

dataset with the corresponding facial part from the neutral

expression scan of the same person. This has been done to

better support various expressions We also found it bene-

ficial to disable the StyleGAN noise, typically injected into

the generator, for the face part of the UV map, to smooth out

the generated facial displacements relative to the scalp dis-

placements that normally require higher level of detail. For

the scalp region, the StyleGAN noise is constant, initialized

separately for each generator layer before training.

Post-processing. The non-smoothness of the seam is miti-

gated in two ways, which are described in more detail here.

The first step is blending the displacements. To do that, we

analyze the UV coordinates of the triangles in the custom

layout UF and find the triangles, for which at least one of

its vertices lies on the seam. These are the triangles, for

which some of the UV coordinates belong to the left part

of the UV map (scalp) and some belong to the right part

(face). This also provides us with the texel (i.e. UV map

pixel) correspondence between the seam vertices. To softly

blend the vertices inside the scalp region (left part of the

UV map) near the seam, we first copy the displacements

from the seam texels on the right to the respective texels

on the left. Then, we compute the coordinates of the re-

spective nearest seam texel from all texels inside the scalp

region by applying distance transform algorithm [48]. In

the vicinity of 10 texels from the seam (in any direction in-

side the region), we softly blend the displacements between

the original and the seam ones:

U [i, j] :=
10− dist to seam[i, j]

10
U [nni[i, j], nnj [i, j]]

+
dist to seam[i, j]

10
U [i, j],

for all (i, j) in the 10-texel vicinity of the seam,

where (nni[i, j], nnj [i, j]) stands for the closest found seam

texel to (i, j) and dist to seam[i, j] stands for the distance

to it. The same procedure to applied vice versa: the seam

displacements from the left are copied to the face region

border and blended softly inside the face region.

The second step is aimed to fix the sampling errors that

can occur when sampling a generated UV map. To do that,

we again calculate the distance transform, this time for the

empty space in the UV map (regions corresponding to no

useful information). This way, the nearest to the seam texel

is found for each texel of the empty space, and we copy

the displacement from the nearest seam texel into this texel.

Effectively, this replaces the empty space with the Voronoi

diagram [24] of proximity to the seam, with displacements

from the seam occupying each region of the diagram. As a

result, when the displacements are being sampled from the

UV map with the empty space filling procedure applied in

advance, no UV coordinates fall into the space where no

displacements are set. In case of hitting the space that was

previously empty, the displacement attains a value close to

the nearest displacement at the seam.

B. Results: Technical Details

Unconditional sampling. In Fig. 13, we provide more un-

conditional samples from our model from different view-

points. All the samples have been produced by sampling

z ∈ N (0, I) with a truncation trick [11] with the power

ψ = 0.7. For the evaluation in the Table 1 in the main text,

the implementation of the metrics MMD, JSD, COV from

PointFlow [58] was used. Since FaceVerse contains sam-

ples grouped by subjects, the nearest neighbor of a ground

truth scan is typically a scan of the same subject with a

different expression. Because of that, we only select one

ground truth sample per subject (with the same neutral ex-

pression for all subjects) to calculate COV. All FaceVerse

scans are used to calculate MMD and JSD. As a distance

measure between individual point clouds, aggregated over

multiple observations in MMD and COV, we use Chamfer

Distance (CD).

Ablating over the choice of the generative model archi-

tecture. The VAE used in our experiments is based on the

Lightning Bolts library. The encoder follows the ResNet-

18 architecture consisting of blocks of 2 convolutions each,

with every second convolution with a stride of two (starting

from the third) to downsample the activations spatially the

increasing number of channels (64 in the first two blocks,

then 128, 256, 256, 256, 512, 512 in the next blocks, re-

spectively). The Lightning Bolts implementation adds two

fully-connected layers on top of the encoder (one for the

µ and one for the σ prediction). The dimension of the la-

tent space equals 512. The decoder follows the architecture

symmetric to the encoder, where the stride two for some

13

https://github.com/nihalsid/stylegan2-ada-lightning
https://github.com/nihalsid/stylegan2-ada-lightning
https://github.com/Lightning-Universe/lightning-bolts

convolutions is replaced with a nearest-neighbor 2x upscal-

ing.

For VQ-VAE implementation, we used the imple-

mentation of the VQ layer from vector-quantize-pytorch.

Pixelcnn-pytorch served as a basis for the PixelCNN sam-

pler implementation. Similarly to VAE, ResNet-18 encoder

and decoder were used, with the exception that fewer down-

sampling operations have been used: they were introduced

at each second layer (starting from the third), not each first

layer. This is introduced to maintain a trade-off between the

autoencoder quality and sampling ability, i.e. not to make

PixelCNN operate in a too small latent space. The spatial

resolution of the bottleneck is 32 × 32, which we found to

be optimal, as the sampling performance of PixelCNN de-

grades from the top-left corner to the bottom-right corner

and it is very noticeable already at the 64 × 64 bottleneck

spatial resolution. The number of channels is 64, 128, 128,

32 for each two consecutive blocks, respectively. VQ-VAE

is trained for 10K steps with batch size of 8, which we found

to be enough to reach the sufficient visual quality of autoen-

coding. To facilitate the sampling, we obtain a dataset of

VQ indices and learn PixelCNN to autoregressively sample

from those for 200 epochs with a batch size of 32.

Behavior of the registration procedure. In Fig. 14, 15, 16,

17, we show how the mesh deforms as a result of the vector

displacements optimization and normal displacements opti-

mization.

Consistency of registrations. In Fig. 19, we demonstrate

the analysis as to which template vertices are selected by the

registration procedure to cover various regions of different

meshes. Since we know the UV coordinates of all template

vertices, this can be done by rendering the meshes with a

UV checker texture image. Note that the long hair parts,

such as pony tails, are mostly explained by the same regions

of the layout as the vertices they originate from.

B.1. Applications

Fitting the latent code to a full scan. To fit the latent

to the complete head scan, we have to apply preliminary

steps, similar to the ones used to construct the training set.

Firstly fit the FLAME to the scan, then apply our registra-

tion procedure to get a UV map Ugt. After that, we fit a

w ∈ W+ ⊂ R
16×512 latent code for the StyleGAN gener-

ator g(w) : W+ → R
H×W×3 to satisfy the following loss

terms:

Lfull
opt (w|Ugt,λ)

= λLPIPS · LPIPS(g(w), Ugt)

+ λL1 · L1(g(w), Ugt),

where L1(·, ·) is an average pixel-wise L1 distance between

two images and LPIPS(·, ·) corresponds to the LPIPS

score [62]. To calculate LPIPS, we cut the 256 × 256 UV

maps (both predicted U = g(w) and ground truth Ugt into

sixteen 64×64 patches, evaluate LPIPS between the respec-

tive patches of U and Ugt, and average the obtained sixteen

scores. The parameters of the loss equal to λLPIPS = 0.1 and

λL1 = 3. The loss is being optimized via Adam algorithm

with the learning rate of 10−2 for 1K steps. The w is initial-

ized as the average latent predicted by the trained StyleGAN

mapping network, evaluated over 105 codes z ∈ N (0, I).

Finally, we optimize for the StyleGAN noise (only for

the scalp region of the UV space) to better fit the tiny de-

tails of the map Ugt. This step can be omitted in practice

if fitting very high-frequency details is not required. Ex-

actly the same loss terms are being optimized, this time not

with respect to w but with respect to the StyleGAN noise

tensors of all generator layers, while w remains fixed. The

optimization is again carried out by Adam with the same

learning rate and number of steps.

Fitting the latent code to a depth map. Fitting the la-

tent representation to represent a partial observation poses

a more challenging problem than trying to represent a full

scan, since the resulting displacements must both resem-

ble the original point cloud and complete it in a realistic

way. This requires several changes to the fitting pipeline,

described next.

Firstly, prior to applying the registration procedure to

register part of the cloud P in the UV space, we identify

the mask of points m ∈ {0, 1}|V | that are allowed to be

offset by selecting only the points within the convex hull

of the point cloud, expanded by 1.5x from its center to

account for the possible important regions missing in the

point cloud. The points below a certain horizontal plane

are not accounted for when estimating the convex hull to

disregard the shoulders and clothing, usually featured in

NPHM raw scans. The level of the horizontal plane is se-

lected as a 30% quantile of the coordinates of the points

along the vertical axis. Masking out the points too far from

the convex hull of the point cloud is especially important

when the point cloud covers the minority of the geome-

try (e.g. if it is coming from a single depth map), since

in this case, these points tend to pull in to cover the parts

that the points inside the hull cannot explain (e.g. due to the

regularizations), and this results in a non-plausible shape.

For the registration procedure itself, stronger regularization

parameters for the first stage have been selected, namely

λStage 1 = (λChamfer
Stage 1 , λ

edge
Stage 1, λ

lapl
Stage 1) = (2·103, 8·105, 105).

The correspondence pruning threshold, on the contrary, is

raised to 10.0 for the first stage to allow the points to move

farther while maintaining higher smoothness of the overall

geometry due to stronger regularizations. For the second

stage, the threshold is on the contrary reduced to 0.1 to pe-

nalize for large false movement of points along the template

normals to explain the individual points of the cloud.

14

https://github.com/lucidrains/vector-quantize-pytorch/tree/master
https://github.com/jzbontar/pixelcnn-pytorch/tree/master
https://uvchecker.vinzi.xyz/

At the end of the registration, we refine the mask of

the points by only selecting those of them that are suffi-

ciently close to the fitted point cloud: mfinal
i = mi · [d(vi +

DStage 2,i, nn(vi + DStage 2,i, P)) ≤ t], where t defines the

proximity threshold, and its optimal value depends on the

sparsity of the cloud. For the point cloud formed from a

dense depth map, we set t = 0.1, and for a sparse cloud

with only 1% points of the original depth map left, we set

t = 0.3. The regressed displacements and the mask are sep-

arately baked in the UV map as two independent images,

3-channel real-valued U and 1-channel binary M , respec-

tively. In Fig. 18, we demonstrate the typical result of the

partial registration stages.

Another important change lies in the latent fitting pro-

cedure. In our observations, the optimization of w ∈ W+
latent code works great for the visible part but tends to pro-

duce displacements closer to the average shape for the non-

visible part. We explain it by not strong enough supervision

from the prior during fitting in W+ space. To mitigate that

effect, we first fit the z ∈ Z ⊂ R
D latent code of the Style-

GAN mapping network map(z) : Z → W+, obtain the

respective w = map(z) ∈ W+ and regress the delta to

the w code: ∆w. We found that optimizing z code yields

much better, yet rougher result of completion, and refining

the map by regressing the ∆w greatly improves fitting of

the details.

In more detail, during the first z optimization step, we

optimize the following loss:

Lz
opt(z|Ugt,λ)

= λLPIPS · LPIPS(g(map(z)) ·M,Ugt ·M)

+ λL1 · L1(g(map(z)) ·M,Ugt ·M),

Similarly to the Lfull
opt , we use λLPIPS = 0.1 and λL1 = 3.

The z is initialized from N (0, I) and further optimized by

Adam with the learning rate of 10−2 for 500 steps. Here and

further, LPIPS(·, ·) and L1(·, ·) follow the same expressions

as for the full scan fitting.

During the second ∆w optimization step, we optimize a

similar expression with a few additional terms:

L∆w
opt (∆w|z, Ugt,λ)

= λLPIPS · LPIPS(g(map(z) + ∆w) ·M,Ugt ·M)

+ λL1 · L1(g(map(z) + ∆w) ·M,Ugt ·M)

+ λLPIPS
preserve · LPIPS(g(map(z) + ∆w) · (1−M),

g(map(z) · (1−M))

+ λL1

preserve · L1(g(map(z) + ∆w) · (1−M),

g(map(z)) · (1−M))

+ λface‖g(map(z) + ∆w) ·M face‖1,

where M face is a predefined mask of the face region in the

UV space, reduced to the circle including the eyes, nose and

mouth.

The third and second “preserve” terms are introduced

to not let the map guided by the ∆w optimization deviate

much from the output corresponding to the regressed z in

non-visible regions, which is essential due to the tendency

of convergence to the average shape there when optimizing

in the W+ space. λLPIPS = 0.1 and λL1 = 3 remain the

same as before, and λLPIPS
preserve = 0.01 and λL1

preserve = 0.3 are

selected 10× less. The last regularization term is introduced

to avoid hallucinations in the facial region that otherwise

become visually apparent in the non-visible region of the

map even in case of relatively small high-frequency incon-

sistency. λface is set to 10
256 . The optimization is carried out

by Adam with the same learning rate of 10−2 for 500 steps.

The ∆w is initialized with zeros.

Finally, we optimize the StyleGAN noise to improve the

details in the visible part. Despite that we consider this

step optional, we found that it helps reconstruct more detail

even for a sparse cloud. We optimize the same expression

as Lz
opt, with the difference that it is only being optimized

w.r.t. the StyleGAN noise tensors (only in the scalp region).

The only modification is the introduced regularization that

equals to the sum of the noise tensors L2 norms. The opti-

mization is carried out by Adam with the same learning rate

of 10−2 for 500 steps. The coefficient of this regularization

is equal to 10−5.

In the Supplementary Video, we demonstrate more re-

sults of fitting the latent to the point clouds with different

sparsity.

Animation. Here we expand on more details regarding ap-

plying displacements to a template, deforming over time.

Compared to the simple unconditional scenario, where the

displacements are also applied to a certain FLAME tem-

plate, we have to introduce two key differences.

First, as mentioned in Subsec. A.1, to apply the displace-

ments to the template, we apply Butterfly subdivision, the

MeshLab implementation of which also smooths the sur-

face. However, the result of Butterfly is not consistent over

various FLAME templates and yields a bit different number

of vertices every time. To solve that, we come up with con-

sistent subdivision, i.e. the way to construct the same topol-

ogy for every FLAME. To do that, we first apply Butterfly

subdivision to an arbitrary scan, and for each vertex after

the subdivision, we find which triangle of the original tem-

plate it belongs to and the barycentric coordinates w.r.t. that

triangle. Later, for every new template, the locations of the

subdivided vertices are evaluated based on these triangles

and barycentric coordinates. To handle the seam accurately,

we consider each vertex of every triangle after subdivision

individually, thus accounting for the duplicate vertices.

An artifact of such procedure is that the smoothness of

15

the surface, introduced in the MeshLab implementation of

Butterfly subdivision, cannot be trivially transferred onto

a new mesh this way. Because of this, the surface nor-

mals remain the same within the large triangles of the orig-

inal template even after the subdivision, creating a non-

appealing “tiling” effect. To mitigate that, we apply Lapla-

cian smoothing [54] in its classical version to smooth the

surface. In order to account for important subtle parts, we

apply a different number of Laplacian smoothing iterations

to different regions, namely, 3 times to the lips region, 5

times to the face skin (face except mouth, eyeballs and eye

surroundings), and 10 times to the scalp and the neck. Since

the realism of mouth, ears, and eyeballs is important for an-

imation, they remain intact.

Second, as mentioned in the main text, we rotate

the displacements according to the rotation of the sur-

face normals of the template. To do that, we first es-

timate the local basis of the TBN space [2] for each

FLAME in a sequence. This basis defines the nor-

malized tangent t
k

i
, bitangent b

k

i
, and normal n

k

i
, pre-

estimated for the i-th vertex of the FLAME template

F k = FLAME(shape, expk, jawk, headposek). In addi-

tion, we estimate the TBN basis (tneutral
i

, bneutral
i

,nneutral
i

) for

a FLAME, corresponding to the same person and a neutral

expression and pose F neutral = FLAME(shape,0,0,0).
The displacements D, queried from the generated UV map

U , are first transferred from the object space into the neutral

TBN space:

DTBN =
(

(tneutral
i

· di), (b
neutral
i

· di), (n
neutral
i

· di)
)|D|

i=1

Then, for each of the sequence frames, we transfer them

into object space, this time w.r.t. the TBN basis of the given

frame:

D
object

k =
([

t
k

i
b
k

i
n

k

i

]

· dTBN
i

)|D|

i=1

(the t
k

i
, bk

i
, nk

i
, dTBN

i
vectors above treated as columns).

More examples of animations can be found in the Sup-

plementary Video.

16

F
ro

n
ta

l
L

ef
t

R
ig

h
t

B
ac

k
F

ro
n

ta
l

L
ef

t
R

ig
h

t
B

ac
k

Figure 13. Additional results of the diversity and level of detail of the unconditionally sampled generations from HeadCraft. The genera-

tions are obtained by randomly sampling z ∼ N (0, I) latent code of the generative model. The displacements, returned by the model, are

applied to the random FLAMEs sampled from Gaussian distribution with statistics calculated over the NPHM dataset.

17

FLAME Stage 1 Stage 2 Ground truth

F
ro

n
ta

l
L

ef
t

T
o

p

FLAME Stage 1 Stage 2 Ground truth

F
ro

n
ta

l
L

ef
t

T
o

p

Figure 14. Additional demonstration of the two-stage registration. Stage 1 corresponds to the vector displacements regression; Stage 2 – to

the refinement of the displacements along the normals. The second stage significantly improves the level of detail and allows us to match

the high-frequency component of the scans, such as strands and subtle face features.

18

FLAME Stage 1 Stage 2 Ground truth

F
ro

n
ta

l
L

ef
t

T
o

p

FLAME Stage 1 Stage 2 Ground truth

F
ro

n
ta

l
L

ef
t

T
o

p

Figure 15. Additional demonstration of the two-stage registration. Stage 1 corresponds to the vector displacements regression; Stage 2 – to

the refinement of the displacements along the normals. The second stage significantly improves the level of detail and allows us to match

the high-frequency component of the scans, such as strands and subtle face features.

19

FLAME Stage 1 Stage 2 Ground truth

F
ro

n
ta

l
L

ef
t

T
o

p

FLAME Stage 1 Stage 2 Ground truth

F
ro

n
ta

l
L

ef
t

T
o

p

Figure 16. Additional demonstration of the two-stage registration. Stage 1 corresponds to the vector displacements regression; Stage 2 – to

the refinement of the displacements along the normals. The second stage significantly improves the level of detail and allows us to match

the high-frequency component of the scans, such as strands and subtle face features.

20

FLAME Stage 1 Stage 2 Ground truth

F
ro

n
ta

l
L

ef
t

T
o

p

FLAME Stage 1 Stage 2 Ground truth

F
ro

n
ta

l
L

ef
t

T
o

p

Figure 17. Additional demonstration of the two-stage registration. Stage 1 corresponds to the vector displacements regression; Stage 2 – to

the refinement of the displacements along the normals. The second stage significantly improves the level of detail and allows us to match

the high-frequency component of the scans, such as strands and subtle face features.

21

Input p.c. FLAME Stage 1 Stage 2 Masking mfinal Ground truth

F
ro

n
ta

l
L

ef
t

T
o

p

Input p.c. FLAME Stage 1 Stage 2 Masking mfinal Ground truth

F
ro

n
ta

l
L

ef
t

T
o

p

Figure 18. Demonstration of the stages of the partial registration procedure required to fit a part of the scan. The key difference between

this procedure and the standard registration used to generate training data for HeadCraft is in the presence of only a part of the scan, e.g. a

point cloud coming from the depth map. To overcome that obstacle, the displacements are being estimated only in the convex hull of the

point cloud, and are subsequently filtered out by a separate mask mfinal, leaving only the displacements close enough the ground truth scan

(others are nullified in this visualization).

22

Figure 19. Consistency analysis of the registration. We demonstrate which template vertices are offset with the registration procedure to

cover various regions of different meshes. Since we know the UV coordinates of all template vertices, this can be done by rendering the

meshes with a UV checker texture image. For clarity of the visualization, the texture is applied to the standard FLAME layout. Note that

the long hair parts, such as pony tails, are mostly explained by the same regions of the layout as the vertices they originate from.

23

	. Introduction
	. Related Work
	. Method
	. Displacements registration procedure
	. Generative model

	. Experiments
	. Training procedure
	. Results
	. Applications
	. Analysis

	. Discussion
	. Method: Technical Details
	. Displacement registration procedure
	. Generative model

	. Results: Technical Details
	. Applications

