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Fig. 1. We present GeomHair – a method for reconstructing complete hair strands representations from 3D scans that can be obtained from various sources,

such as handheld 3D scanners, designer assets, and others. Our method extracts information about guiding sharp features directly from the scan geometry by

employing a combination of 3D and 2D orientation detectors and fits strands with a di�usion prior conditioned on the scan-specific prompt embedding. We

also provide a dataset of reconstructed 3D assets obtained using our method from the meshes produced by a structured light scanner.

We propose a novel method that reconstructs hair strands directly from

colorless 3D scans by leveraging multi-modal hair orientation extraction.

Hair strand reconstruction is a fundamental problem in computer vision and

graphics that can be used for high-�delity digital avatar synthesis, anima-

tion, and AR/VR applications. However, accurately recovering hair strands

from raw scan data remains challenging due to human hair’s complex and

�ne-grained structure. Existing methods typically rely on RGB captures,

which can be sensitive to the environment and can be a challenging domain

for extracting the orientation of guiding strands, especially in the case of

challenging hairstyles. To reconstruct the hair purely from the observed

geometry, our method �nds sharp surface features directly on the scan and

estimates strand orientation through a neural 2D line detector applied to the

renderings of scan shading. Additionally, we incorporate a di�usion prior

trained on a diverse set of synthetic hair scans, re�ned with an improved

noise schedule, and adapted to the reconstructed contents via a scan-speci�c

text prompt. We demonstrate that this combination of supervision signals

enables accurate reconstruction of both simple and intricate hairstyles with-

out relying on color information. To facilitate further research, we introduce

Strands400, the largest publicly available dataset of hair strands with de-

tailed surface geometry extracted from real-world data, which contains

reconstructed hair strands from the scans of 400 subjects.
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1 INTRODUCTION

We propose a new method of modeling strand-based hair from a

single colorless 3D scan of a human head. Reconstructing hair as

3D curves is a highly challenging problem at the intersection of

computer vision and graphics. However, it is an essential component

for synthesizing high-�delity digital avatars, as reconstructing not

only the rigid surface of the avatar but also full-length strands

allows for realistic animation under the physical parameters of the

environment. In addition, modeling the interior of the hair volume

via strands is essential to achieving a realistic and physically based

rendering of hair dynamics, which is crucial for telepresence, motion

capture, gaming, and other applications of human head modeling.

Recovering hair strands is problematic and often highly ill-posed

due to human hair’s complex and �ne-grained structure since only

a portion of the hair strands form the observed surface. To solve this

ill-posedness, di�erent approaches have been proposed to infer the

location and orientation of the coarse strand structure (often referred

to as guide strands) of real-life subjects from various modalities.

Earlier works attempted to estimate a simpli�ed hair surface

via proxy geometry [Fu et al. 2022; Gafni et al. 2020; Grassal et al.

2021; Khakhulin et al. 2022; McGuire et al. 2021; Park et al. 2020;

Wang et al. 2022; Zheng et al. 2021, 2022], making the result not

always suitable for plausible animation. Later attempts required

rather tedious capture with setups such as light stages to obtain
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Fig. 2. Overview of our GeomHair framework. Our method consists of two main stages: orientations extraction (le�) and strands reconstruction (right).

In the orientation extraction stage, we extract complementary orientation signals by combining 3D orientations from crest lines with 2D orientations obtained

from TEED features applied to rendered shading of the scans. During reconstruction, we optimize a geometry texture to generate hair strands while enforcing

multiple constraints: the orientation loss (Lorient) ensures strand growth aligns with our extracted 3D+2D orientation field, volume loss (Lvolume) keeps

strands near the surface, and Chamfer distance (Lchamfer) promotes uniform coverage of the hair volume. To enhance realism, we additionally incorporate a

di�usion prior (Lprior) conditioned on hairstyle descriptions generated by a VQA model analyzing the input scan.

RGB information about hair surface under various lighting condi-

tions [McGuire et al. 2021; Nam et al. 2019; Rosu et al. 2022; Wang

et al. 2022, 2021]. Modern approaches [Luo et al. 2024; Sklyarova

et al. 2023a; Wu et al. 2024; Zakharov et al. 2024; Zhou et al. 2024]

lift the requirement of employing a capture setup by drawing in-

formation about the guide strands directly from RGB video frames,

such as a 360◦ handheld smartphone capture under static conditions.

While these approaches are the most a�ordable in terms of the cap-

ture e�ort, relying on RGB input alone can introduce sensitivity to

lighting conditions, shadows, and occlusions, making the respective

methods less e�ective for reconstructing intricate hairstyles such

as wavy or curly hair. Additionally, distributing large collections of

high-resolution RGB videos of people with diverse demographics

can be complicated by privacy issues.

At the same time, recent developments in 3D scanning intro-

duced novel, publicly available datasets of a large number of scanned

meshes of human heads with a high level of detail. Similarly, man-

ually constructed, rigged meshes of human characters remain the

primary representations in gaming and animation. Furthermore,

the need for the methods of a�ordable large-scale reconstruction

is motivated by the recent progress in generative models that cur-

rently have to resort to augmentation techniques to ensure the

required dataset size and diversity [He et al. 2024] or rely on costly

handcrafted parametric hair models [Zhou et al. 2023a].

To this end, we introduce a novel method for reconstructing hair

strands directly from the scan geometry without relying on the

captured photographs or the surface color. By focusing on geo-

metric rather than color information, our approach can �nd more

prominent guiding sharp features of the surface, thus enabling the

reconstruction of high-quality 3D hair strands with higher robust-

ness. The ability to reconstruct hair directly from 3D scans, which

is available in large amounts, opens more data acquisition oppor-

tunities for diverse hair strand collections. In turn, this introduces

more room for data-driven generative models for hair by reducing

the need for tedious synthetic data creation [Zhou et al. 2023a] or

heavy augmentation techniques [He et al. 2024] necessary for their

training.

Our method is based on optimizing the strands, guided by the

orientation losses, di�usion prior, and volume guidance. Contrary

to existing image-based approaches, which derive the primary su-

pervision signal -— orientation maps —- by processing input RGB

images, we employ two sources of orientation extraction directly

from the 3D scan. First, we �nd sharp ridges and ravines on the

mesh via Crest Lines [Yoshizawa et al. 2005] and calculate their

orientations. Second, enhance orientation extraction by rendering

scan-based shading from multiple viewpoints and applying a neural

2D line orientation detector [Soria et al. 2023] as auxiliary supervi-

sion. This combination of geometric and learned 2D cues provides

a more accurate and reliable estimate of strand orientations, even

for complex hairstyles. Furthermore, we integrate a di�usion prior

trained on synthetic hair scans from the HAAR [Sklyarova et al.

2023b] dataset. Unlike in previous state-of-the-art [Sklyarova et al.

2023a; Zakharov et al. 2024], our approach re�nes the di�usion

prior through additional di�usion steps and an optimized noise

schedule, enabling better modeling of intricate hair structures. To

further enhance adaptation to speci�c hairstyles, we condition the

prior on the embeddings of a text prompt, generated by a vision lan-

guage model [Li et al. 2023] for the scan renderings and aggregated

over various viewpoints. This novel prompting mechanism provides

greater �exibility in handling diverse hairstyles and improves the

generalization of the reconstruction process.

To summarize, our contributions are as follows:

• We propose a �rst reconstruction method that works with

colorless scans using extraction of 3D and 2D orientations

from the mesh surface.

• We improve the di�usion-based score distillation sampling

prior with text guidance and an improved denoising schedule.

• We use our method, named GeomHair, to transform the scans

from both existing and newly collected public data to con-

struct the Strands400 dataset, the largest publicly available
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real-world dataset of hair strands with diverse hairstyles and

demographics of 400 participants that have precisely regis-

tered corresponding surface geometry.

2 RELATED WORK

2D and 3D Line Detection. 3D hair reconstruction heavily re-

lies on 3D line detection, as hair can be e�ectively approximated

with 3D polylines. Di�erent 2D line detectors have been explored

for hair reconstruction, including edge detection �lters such as

Canny [Canny 1986] and Gabor [Paris et al. 2004], with the latter

receiving wide adoption [Hu et al. 2015; Kuang et al. 2022; Luo et al.

2024; Rosu et al. 2022; Wu et al. 2024, 2022; Zakharov et al. 2024;

Zhou et al. 2024, 2018]. However, while providing better results for

RGB images, Gabor-based line orientation maps fail in low or strong

directional light environments. Also, Gabor �ltering heavily relies

on the re�ectance pro�le of the hair �bers [Paris et al. 2004], leading

to failures for some of the data sources, such as colorless scans. Thus,

unlike previous hair modeling work, our method relies on the other

supervision signals based on denoised 2D edges [Soria et al. 2023]

and 3D crest lines [Yoshizawa et al. 2005]. In combination, these

two supervision sources allow us to achieve superior performance

compared to classically used 2D Gabor �lters and their 3D analogs.

Strand-based Hair Priors. Hair strands have a complicated in-

ternal structure that requires priors for accurate modeling. These

priors are trained from the synthetic datasets in the form of the gen-

erative hairstyle models [He et al. 2024; Rosu et al. 2022; Sklyarova

et al. 2023a,b; Zhou et al. 2023a] or strand-based hair growing mod-

els [Kuang et al. 2022; Wu et al. 2024, 2022; Zheng et al. 2023; Zhou

et al. 2024]. Strand-based hair-growing is usually formulated as a

conditional strand generation given a 3D �eld of hair directions.

This model can be formulated as an algorithm that traverses this

�eld [Paris et al. 2004] or a neural network [Wu et al. 2024, 2022;

Zhou et al. 2024].

However, these approaches do not allow end-to-end usage of

this prior during the strand-based hairstyle reconstruction; instead,

they heavily rely on the quality of volumetric hair reconstruction.

On the other hand, generative hairstyle priors are highly versatile

and can work with various data modalities. They utilize neural

generative approaches, such as latent di�usion [Sklyarova et al.

2023a,b], VAEs [Zhou et al. 2023a], or GANs [He et al. 2024]. These

models are trained from a dataset of synthetic assets and can be

used for downstream tasks, such as reconstruction [He et al. 2024;

Rosu et al. 2022; Sklyarova et al. 2023a], text-conditional 3D asset

generation [Sklyarova et al. 2023b] or semantic editing [Rosu et al.

2022; Zhou et al. 2023a]. In our work, we utilize a state-of-the-

art text-conditional deep generative prior HAAR [Sklyarova et al.

2023b] to regularize the hair interior in our reconstructions during

an end-to-end optimization process.

Strand-based Hair Reconstruction. The data domains that are

used for strand-based hair reconstruction include single images [Wu

et al. 2022; Zheng et al. 2023; Zhou et al. 2018], monocular videos [Luo

et al. 2024; Sklyarova et al. 2023a;Wu et al. 2024; Zakharov et al. 2024;

Zhou et al. 2024], multi-view captures [Rosu et al. 2022; Takimoto

et al. 2024] and even CT scans [Shen et al. 2023]. Image-to-hairstyle

regression methods utilize deep neural networks to learn a regres-

sion model capable of estimating a strand-based 3D hairstyle from

2D information, such as Gabor-based orientation maps or depth

maps [Wu et al. 2022; Zheng et al. 2023; Zhou et al. 2018]. This

allows easy in-the-wild applications such as asset generation di-

rectly from the images, but are not as versatile as generative priors.

For example, these methods rely highly on high-frequency feature

extraction from the images to predict the underlying strand-based

hairstyle. Monocular videos and multiview data present a richer and

more constrained data source in terms of the ease of 3D reconstruc-

tion but ultimately su�er from the same issue. The closest problem

setting to ours is hair modeling from CT scans. However, CT scan-

ners provide highly accurate volumetric data, including the internal

structure of the hairstyle [Shen et al. 2023], which is not available

in colorless scans. Our problem setting allows our method to have

a wide range of applications, starting from a reconstruction based

on structured light 3D scanners and ending with the populating the

existing mesh-based hair assets with high-frequency strand-based

geometry.

3 METHOD

In this section, we present an overview of the method. We take

inspiration from the approach used in Neural Haircut [Sklyarova

et al. 2023a], whichwe brie�y review in Subsec. 3.1. In Subsec. 3.2, we

introduce GeomHair and highlight the key di�erences that enable

direct training on a 3D scan.

3.1 Recap: Neural Haircut

In Neural Haircut [Sklyarova et al. 2023a], hairstyle is parametrized

using hair map � with resolution 256 × 256 corresponding to a

scalp region of the 3D head model. Each texel of the map de�nes

a single hair strand that is represented as a 3D polyline with L

points: S8 = {p;
8
}!
;=1

. We de�ne directions between nearest points

as d;
8
= p;+1

8
− p;

8
and normalized b;

8
= d;

8

/

∥d;
8
∥2.

The reconstruction method consists of two stages, coarse and �ne

reconstruction. During the coarse stage, they estimate hair and bust

geometry as signed distance functions (SDFs) 5hair, 5bust : R
3 →

R as well as train an additional surface 3D hair orientation �eld

V : R
3 → S

2. V is optimized using a minimal angular di�erence

between its projections into camera space and Gabor orientation

maps estimated from ground-truth RGB images.

During the �ne stage, hairstyle in the form of latent hairstyle map

T = {z8 }
#
8=1

is optimized to match geometry 5hair and orientations

V obtained from the coarse stage. After training, the hairstyle from

T could be easily retrieved by using the pre-trained decoder G. At

each iteration, a set of points # sampled from the �tted FLAME

scalp, strands embeddings {z8 }
#
8=1

are retrieved from these locations

from T and decoded into 3D space using the pre-trained decoder G.

Strands S8 are supervised to lie inside volume by Lvol:

Lvol =

#
∑

8=1

!
∑

;=1

I
[

5hair (p
;
8 ) > 0

] (

5hair (p
;
8 )
)2
, (1)

where I denotes the indicator function. To ensure that the visible

outer surface of 5hair is uniformly covered, a one-way Chamfer

, Vol. 1, No. 1, Article . Publication date: May 2025.



4 • Rachmadio Noval Lazuardi∗ , Artem Sevastopolsky∗ , Egor Zakharov, Ma�hias Nießner, and Vanessa Sklyarova

distance is optimized between the sampled points x: and its nearest

neighbor from the strand p: :

Lchm =

 
∑

:=1



x: − p:




2

2
, (2)

Finally, orientations of all strands that lie near the visible surface

are supervised using the learned direction �eld V :

Lorient =

"
∑

<=1

(

1 −
�

�b< · V (p<)
�

�

)

, (3)

where p< are a set of strand points near the surface and b< -

their corresponding directions. Full geometry loss can be written as

follows:

Lgeom = Lvol + _chmLchm + _orientLorient . (4)

Finally, di�usion-based loss Ldi� forces T to be in the distribution

of realistic hairstyles. Di�usion loss is applied in low-resolution TLR
space by using a pre-trained on synthetic hairstyles di�usion prior:

Ldi� = ETLR,f,n

[

_di� (f) ·


D(x, f) − TLR




2

2

]

, (5)

where _di� (f) is a weighting function, and the expectation is ap-

proximated via sampling. For more details, please follow the sup-

plementary doc.

The �nal loss for the �ne stage is the following:

L�ne = Lgeom + _di�Ldi� + _renderLrender, (6)

Here, Lrender represents a photometric loss that enhances the

hairstyle quality. Since our setup lacks color information, we de-

scribe how we adapt the �rst two terms to our scenario.

3.2 GeomHair

Overview. Our method reconstructs 3D hair strands by extracting

geometric features from full 3D head scans. We begin by applying a

segmentation algorithm [Xie et al. 2021] to isolate the hair region

from the rest of the head. Once a clean hair mesh is obtained, we

estimate hair orientations by integrating features from crest lines

[Yoshizawa et al. 2005], applied to the hair volume, with 2D features

extracted using [Soria et al. 2023] from multi-view renderings of

the colorless scan. These geometric features form the basis of our

strand synthesis process.

To generate 3D hair strands, we utilize the parametric model

from [Rosu et al. 2022], which operates on a latent geometry tex-

ture. We enforce constraints to keep the strands near the surface,

ensure dense coverage of the hair volume, and align their growth

direction with our estimated orientation vectors, following a simi-

lar approach to [Sklyarova et al. 2023a]. Neural Haircut is the �rst

method to introduce a di�usion prior as a regularization technique

for generating realistic hairstyles. We re�ne this pipeline further by

incorporating the conditional di�usion prior from [Sklyarova et al.

2023b] and introducing a novel scheduling strategy with multiple

denoising steps to enhance reconstruction quality.

3.3 Estimating Hair Orientation

3D crest lines. To accurately extract 3D hair strands from the sur-

face of our high-quality scans, we utilize crest lines—salient surface

features de�ned by curvature extrema. Crest lines are especially

e�ective for hair extraction, as they capture the sharp bends and

curves characteristic of hair strands.

Following [Yoshizawa et al. 2005], we de�ne crest lines on a

surface ( as the set of points where one of the principal curvatures

reaches an extremum along its corresponding curvature direction.

Mathematically, we can express this as:

4max =

m:max

mCmax
= 0 (for convex crest lines), (7)

4min =

m:min

mCmin
= 0 (for concave crest lines), (8)

where :max and :min are the maximum and minimum principal

curvatures, respectively, and Cmax and Cmin are their correspond-

ing principal directions. The quantities 4max and 4min are called

extremality coe�cients.

We use a local polynomial �tting approach to identify crest lines

on our 3D hair scans. For each vertex in the mesh, we �t a cubic

polynomial of the form:

ℎ(G,~) =
1

2
(10G

2 + 211G~ + 12~
2)+

1

6
(30G

3 + 331G
2~ + 332G~

2 + 33~
3)

After computing these values, we trace the crest lines across the

mesh by connecting points where the extremality coe�cients vanish.

To ensure we capture only the most salient features of the hair struc-

ture, we employ a thresholding scheme based on the cyclideness

measure:

� =

√

|4max |2 + |4min |
2 (9)

Let � = {21, . . . , 2# } be a set of crest lines, where each crest line 28
is a set of points {p8 }

!
;=1

, and !8 is the number of points in the 8-th

crest line, which may vary for di�erent crest lines. We treat a single

crest line as a guiding hair strand and compute local orientations

for each.

Speci�cally, we estimate local curvature along each crest line 28 ,

which informs our adaptive window sizing. For each point ?8 , we

compute a local coordinate frame using PCA [Abdi and Williams

2010] on a window of neighboring points. We apply an adaptive

smoothing step to re�ne these initial estimates, balancing noise

reductionwith the preservation of directional changes. The resulting

normalized orientations are then used as a supervision signal for

the strands-based reconstruction in the next step.

2D TEED feature extractor. Previous image-based hair strand

reconstruction relies on Gabor �lters [Paris et al. 2004] to obtain 2D

orientation maps. Gabor �lters have been e�ective in reconstructing

realistic hairstyles. They serve as a supervision signal derived from

RGB images to capture high-frequency details of hair directionality.

However, this approach is limited when applied to 3D mesh inputs,

as the absence of color information makes it challenging to infer

�ne-grained hair orientations. To address this, we adapt the concept

to the more challenging case of colorless 3D scan inputs.
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Speci�cally, we generate 2D orientation maps by applying the 2D

feature extractor TEED [Soria et al. 2023] to multi-view renderings

of the colorless scans. After detecting edges in the rendered views

with TEED, we perform skeletonization to thin the edges to single-

pixel-width paths, e�ectively reducing noise and removing parasitic

lines while preserving the overall hair structure. These skeletonized

paths are then converted into a graph representation to extract the

longest continuous paths, capturing the primary �ow of the hair

strands. For each path segment, we compute orientation angles by

analyzing the directional vectors between connected points. Finally,

we lift both the graph structure and its associated orientation vectors

back into 3D space, establishing a directional �eld that guides the

subsequent hair strand reconstruction.

3.4 Improved di�usion prior.

In Neural Haircut, the authors introduce a global di�usion-based

prior to enhance the realism of reconstructed hairstyles. They train

their di�usion model on the USC-HairSalon [Hu et al. 2015] dataset,

which contains 343 synthetic hairstyles. Building on this idea, our ap-

proach leverages HAAR [Sklyarova et al. 2023b], a text-to-hairstyle

di�usion model, which is trained not only on USC-HairSalon [Hu

et al. 2015] but also on CT2Hair [Shen et al. 2023] and an additional

artist-curated dataset specializing in curly hairstyles.

We integrate HAAR’s conditional di�usion capabilities into our

reconstruction pipeline through three key components:

First, we incorporate HAAR’s text-conditioning pipeline, where

hairstyle descriptions are generated using a VQA model [Li et al.

2023] with renderings of the 3D head scan as input. These descrip-

tions are then processed through BLIP [Li et al. 2022] to generate text

embeddings, which serve as conditioning inputs for the di�usion

model.

Second, we implement a denoising scheduler that begins with

high noise levels and progressively reduces them throughout opti-

mization. This provides structural guidance in the early iterations

while allowing geometry loss to dominate in later stages. Addition-

ally, we introduce multiple denoising steps to improve adherence to

the prompt.

Third, we enhance scalp map estimation, which de�nes the re-

gions where hair grows. To achieve this, we project segmented 3D

scans onto the FLAME template model and �lter out non-hair re-

gions. In our experiments, we demonstrate that this conditional

di�usion approach provides a stronger prior than the unconditional

model in Neural Haircut, resulting in more accurate reconstructions

of complex hairstyles.

3.5 Strands-based reconstruction.

Our strand-based reconstruction approach builds upon the �ne re-

construction stage of Neural Haircut, with adjustments made to

accommodate our 3D input scans. We optimize a latent hairstyle

map T = {z8 }
#
8=1

to match the underlying geometry and orienta-

tions, utilizing various supervision signals and distance function

representations.

Instead of signed distance functions (SDFs), we utilize an un-

signed distance function (UDF) approximator [Zhou et al. 2023b]

for representing hair geometry. This choice is motivated by the fact

that our extracted hair mesh lacks an internal structure, making the

use of UDF more suitable for our scenario. We pre-train the UDF

model �udf : R
3 → R

+ on our extracted hair mesh and use it to

supervise the volume loss in our training pipeline:

L′
vol =

#
∑

8=1

!
∑

;=1

(

�udf (p
;
8 )
)2
, (10)

where p;
8
represents the ;-th point of the 8-th strand.

Our orientation supervision combines signals from two comple-

mentary sources: 3D crest lines and the lifted from 2D to 3D features

from TEED extractor. The orientation loss is formulated as:

L′
orient = U · L3DO

orient + (1 − U) · L2DO
orient, (11)

where U is a weighting parameter, L3DO
orient

and L2DO
orient

follow the

same angular di�erence structure as in Eq. 3, but use orientation

�elds derived from 3D crest lines (V3D) and lifted TEED features

(V2D) respectively. Based on empirical results, we �nd that U = 0.5

provides the best reconstruction quality, creating an equal balance

between the 3D and 2D orientation signals. For each generated

strand point near the surface, we apply this orientation loss by

�nding its nearest neighbor in the supervision signal.

Furthermore, we apply the Chamfer distance loss Lchm, which

ensures uniform coverage of the visible outer surface, following

established formulations. The complete geometry loss looks similar

to Eq. 4 with new re�ned losses:

L′
geom = L′

vol + _chmLchm + _orientL
′
orient . (12)

As previously described, we employ HAAR’s conditional di�u-

sion model rather than an unconditional one. This di�usion loss

maintains the form shown in Eq. (15) while extending it with the

text condition embedding 2 derived from our automated description

pipeline. Furthermore, we propose to decrease the noise level with

time and do several steps of denoising compared to Neural Hair-

cut [Sklyarova et al. 2023a]. Our �nal optimization objective focuses

on geometric and di�usion-based constraints:

L�nal = L′
geom + _di�Ldi�, (13)

which simpli�es the loss function in Eq. 6 by omitting rendering-

based components.

4 EXPERIMENTS

We use an extended version of NPHM [Giebenhain et al. 2023]

dataset that consists of scans captured by Artec Eva scanners. For

more details, please follow the Supplementary document. We �t

FLAME [Li et al. 2017] head to each scan and segment the hair region

by applying [Xie et al. 2021]. In this work, we compare our method

against the state-of-the-art approaches in hair reconstruction from

monocular video, such as Neural Haircut [Sklyarova et al. 2023a],

Gaussian Haircut [Zakharov et al. 2024], and MonoHair [Wu et al.

2024]. For qualitative comparison, we capture 360-degree monocular

video using a smartphone along with the head scan. For quantitative

evaluation, we use two scenes from Cem Yuksel’s Hair Models [Yuk-

sel et al. 2009].
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4.1 Implementation details

We train our model on a single GPU for 75k steps using Adam

optimizer with a learning rate of 0.001 employed with multi-step

scheduler where the gamma value is 0.5. On an RTX A6000, a single

training typically takes about 14 hours. For di�usion we decrease

the noise level from 80 to 0.5. Also, for the �rst 10k iterations we

make 2 denoising steps with classi�er free guidance weight of 4.0.

4.2 Results

Qualitative evaluation.We compare the results of our hairstyle

reconstructions from colorless scans with the one obtained from

RGB images using Neural Haircut [Sklyarova et al. 2023a], Gauss-

ian Haircut [Zakharov et al. 2024] and MonoHair [Wu et al. 2024].

For Neural Haircut [Sklyarova et al. 2023a], Gaussian Haircut [Za-

kharov et al. 2024], and MonoHair [Wu et al. 2024], the input is

a 360◦ RGB video, and for our method, the input is a correspond-

ing 3D scan without color of the same person, closely following

NPHM dataset [Giebenhain et al. 2023] setup. The results are re-

�ected in Fig. 3). We may observe that our method operates on par

with Neural Haircut and Gaussian Haircut but the �tting process is

more regularized and better adapts to complicated hairstyles. With

MonoHair, hairstyle is generally correct but the hair length is at

times erroneous. Our method also demonstrates better picking of

important guiding strands and hairline.

Quantitative evaluation. We compare our method with Neural

Haircut [Sklyarova et al. 2023a] and Gaussian Haircut [Zakharov

et al. 2024] on two synthetic hairstyles for straight and wavy hair.

To do that, we render it in Blender [Community 2018] and use

the obtained images as input to baseline methods. As our method

works on scans, we voxelize strands and use them as input for our

method. In Table 1, we provide comparison results. Our method

signi�cantly outperforms the baselines for straight hair across most

metrics. Although it shows a small decline in Precision on curly

scenes, it excels in Recall and F-score compared to the others.

Ablation study. We conduct a comprehensive ablation study to

highlight the signi�cance of each component in our pipeline, see

Tab. 1. First, we verify the e�ectiveness of orientation, volume, and

di�usion-based losses: w/o Lorient, w/o Lvol, and w/o Ldi�. Then,

we ablate the importance of using 3D orientations and 2D orien-

tations: w/o 2DO and w/o 3DO. We then checked if replacing our

proposed 3D orientations calculation with the 3D analog of Gabor

�lters (w/ 3DO Gabor) a�ects the performance and found it to deteri-

orate signi�cantly. Then, we validate our proposed data terms with a

baseline Neural Haircut SDS prior: w/ NH prior. After replacing NH

prior with HAAR prior without introducing a proposed denoising

schedule (HAARw/o noise schedule), we notice a drop across almost

all metrics compared to the baseline. The same happens when we

remove text-conditioning from HAAR (HAAR w/o prompt). How-

ever, after introducing the text conditioning and denoised schedule,

we observed a signi�cant boost in metrics (Ours), validating the

e�ectiveness of all individual components in our approach.

Applications. Lastly, we show the potential of our approach for

dataset creation from mesh-based hair assets. We show the results

of our model on artist-created hairstyles; see Figure 4. We notice

that our method can obtain nice-looking results purely from the

provided geometry without using any color information as input.

Input Reconstruction

Fig. 4. Results on 3D-designed assets. Here, we demonstrate the results of

fi�ing to a synthetic, hand-carved 3D mesh from a 3D stock (CGTrader, au-

thor: ZStu� ). Our method is capable of reconstructing a plausible collection

of strands, even when not so many guiding strands can be observed.

w/o Lorient w/o Lvolume w/o Ldi� w/o 2DO 3D Gabor Ours

Fig. 5. Ablation over the various components of the GeomHair pipeline.

Here, we demonstrate the most important components of the pipeline that

provide the largest improvement. The comparison is done over the scans by

Cem Yüksel made from hand-drawn hair strands. 3D Gabor corresponds

to replacing Crest Lines algorithm with more simple Gabor filtering (corre-

sponds to the w/ 3DO Gabor ablation in Table 1).

Limitations and future work. In this work, we show the possi-

bilities of our model to extract strand-based geometry for colorless

scans. This model could be used for scalable dataset generation.

While our method performs well on wavy and straight hairstyles,

we could see that on very curly scenes we reconstruct some unreal-

istic strands. One reason for that is that scans failed to capture such

high-frequency details, which amplify the noisiness of proposed

orientation estimators. A potential direction could be to further

improve the hairstyle prior in order to better denoise the internal

geometry based on surface orientations.
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Fig. 3. Comparison of our method with state-of-the-art hair reconstruction methods across five di�erent scenes. For Neural Haircut [Sklyarova et al. 2023a],

Gaussian Haircut [Zakharov et al. 2024], and MonoHair [Wu et al. 2024], the input is a 360◦ RGB video, and for our method, the input is a corresponding 3D

scan without color of the same person, closely following NPHM dataset [Giebenhain et al. 2023] setup. Faces blurred for anonymity purposes.

5 CONCLUSION

In this work, we propose a method for reconstructing human hair

directly from a colorless 3D scan. Our main idea is to combine sev-

eral training signals, including a di�usion prior, to guide strand

generation inferred from the surface geometry. As demonstrated

by the quantitative and qualitative evaluations on newly collected

scans and handcrafted assets, our method is capable of reconstruct-

ing challenging hairstyles and performs on par with methods that

require color information. The reconstructed hairstyles are suitable

for animation and modeling. Additionally, we present the Strand400
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Straight hair Curly hair

Method 2/20 3/30 4/40 2/20 3/30 4/40 2/20 3/30 4/40 2/20 3/30 4/40 2/20 3/30 4/40 2/20 3/30 4/40

Precision Recall F-score Precision Recall F-score

w/o Lorient 19.2 36.7 51.8 18.8 33.2 50.1 19.0 34.9 50.9 15.3 31.2 47.5 14.5 29.4 44.9 14.9 30.3 46.2

w/o Lvolume 57.4 62.5 64.5 72.9 85.6 96.1 64.2 72.2 77.2 26.9 49.4 66.7 30.6 52.7 69.0 28.6 51.0 67.8

w/o Ldi� 79.4 90.8 93.9 69.4 84.2 90.5 74.1 87.4 92.2 27.2 50.5 68.5 30.0 52.0 68.5 28.5 51.2 68.5

w/o 2DO 81.6 88.5 91.2 81.1 88.8 91.6 81.3 88.6 91.4 30.2 52.8 68.9 32.7 55.1 70.9 31.4 53.9 69.9

w/o 3DO 62.3 83.3 90.4 48.6 71.1 83.3 54.6 76.7 86.7 22.1 42.3 59.9 22.6 42.1 59.1 22.3 42.2 59.5

Crest Lines→ Gabor 2.5 6.5 13.6 2.4 7.8 16.6 2.4 7.1 15.0 2.1 5.3 10.3 1.8 5.1 10.9 1.9 5.2 10.6

w/ NH prior 78.1 88.6 92.3 71.2 84.4 90.5 74.5 86.4 91.4 27.5 50.8 68.7 30.2 52.1 68.3 28.8 51.4 68.5

HAAR w/o noise schedule 78.5 88.5 91.8 61.0 75.4 85.1 68.7 81.4 88.3 27.3 50.9 69.4 26.5 47.7 64.6 26.9 49.2 66.9

HAAR w/o prompt 78.6 88.5 91.9 60.9 75.3 85.0 68.6 81.4 88.3 28.2 52.3 70.8 26.9 48.0 64.8 27.5 50.1 67.7

Ours 80.4 89.0 91.7 72.6 85.6 90.8 76.3 87.3 91.2 28.2 52.0 70.0 29.9 51.8 68.3 29.0 51.9 69.1

Neural Haircut 59.9 84.1 92.1 13.1 22.7 31.5 21.5 35.8 46.9 45.8 72.1 84.6 6.4 12.8 21.0 11.2 21.7 33.6

Gaussian Haircut 64.2 72.6 76.6 46.3 53.9 59.7 53.8 61.9 67.1 35.5 55.8 69.4 24.3 42.9 58.4 28.9 48.5 63.4

Table 1. �antitative evaluation of di�erent methods and ablations. For straight hair, our method outperforms both Neural Haircut [Sklyarova et al. 2023a]

and Gaussian Haircut [Zakharov et al. 2024] in both precision and F-score metrics. For curly hair, our method achieves superior recall and F-score compared to

both approaches, demonstrating be�er overall hair strand recovery.

dataset, which was compiled by applying our algorithm to a combi-

nation of the NPHM dataset and newly collected scans.
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A STRANDS400 DATASET

Legal notice. All participants in our dataset signed an agreement

form compliant with GDPR. Please note that GDPR compliance

includes the right for every participant to request the timely dele-

tion of their data, which we will enforce as part of the distribution

process of our dataset.

Dataset statistics. In Fig. 6, we demonstrate the distribution of

the age, strati�ed by gender, (left) and of ethnicity (right), reported

by the participants in the Strands400 dataset. In the age histogram

(left), the horizontal axis corresponds to the participants’ age bins,

and the vertical axis corresponds to the number of people in the

bin. Only the votes of the participants who willingly disclosed that

information were taken into account.

Additionally, we analyze the content of the answers provided by

the employed VQA model (LLaVA [Li et al. 2023]) after showing the

rendered shading of the frontal and back views of the 3D scans in

Strands400. We used the same BLIP embedder [Li et al. 2022] as in

training to obtain the embeddings from the answers to all 27 ques-

tions asked in training and �t t-SNE [Van der Maaten and Hinton

2008] to them to visualize them on a 2D plane. Apart from that, to

obtain the coloring of the t-SNE points, we run K-Means [Ahmed

et al. 2020] over 5 clusters. The t-SNE locations are enhanced with

LLaVA answers for the respective samples. We visualize the results

in Fig. 9 and Fig. 10. Each second sample has been shown in the

plots to provide more space for the captions.

Capture setup. Our dataset consists of two parts – the subset of

the latest version of NPHM that contains 383 scans, and separately

collected 17 scans with a setup similar to the NPHM setup. The

latter setup consists of two handheld Artec Eva scanners, rotating

over a 360◦ trajectory within ∼ 3 seconds to capture a single person.

Since our setup largely follows NPHM capture setup, we refer the

reader to the NPHM paper for the remaining details regarding the

capture setup [Giebenhain et al. 2023]. Additionally, for each of the

20 scans in the second part of the dataset, we have collected a 360◦

RGB video with a smartphone, around 30-seconds long and in 4K

resolution, to be able to compare our method with the baselines.

These participants in this category were selected with an emphasis

on hairstyles, more challenging for reconstruction (wavy, curly, etc.),

to better align the overall distribution to the overall spectrum of

hairstyles.

Representative samples.More samples from the Strands400 dataset

are demonstrated in Fig. 7 and in Fig. 8.

B TECHNICAL DETAILS

Questions employed in the calculation of the text prompt for

the di�usion prior conditioning. We provide the list of questions

for querying LLaVA model below.

(1) Describe in detail the bang/fringe of depicted hairstyle including

its directionality, texture and coverage of face?

(2) What is the overall hairstyle depicted in the image?
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Fig. 6. The distribution of the age, stratified by gender, (le�) and of ethnicity (right), reported by the participants in the Strands400 dataset. Only the votes of

the participants who willingly disclosed that information were taken into account.

(3) Does the depicted hairstyle longer than the shoulders or shorter

than the shoulder?

(4) Does the depicted hairstyle has short bang or long bang or no

bang from frontal view?

(5) Does the hairstyle has straight bang or Baby Bangs or Arched

Bangs or Asymmetrical Bangs or Pin-Up Bangs or Choppy Bangs

or curtain bang or side swept bang or no bang?

(6) Are there any afro features in the hairstyle or no afro features?

(7) Is the length of hairstyle shorter than middle of the neck or

longer than middle of the neck?

(8) What is the main geometry features of the depicted hairstyle?

(9) What is the overall shape of the depicted hairstyle?

(10) Is the hair short, medium, or long in terms of length?

(11) What is the type of depicted hairstyle

(12) What is the length of hairstyle relative to human body?

(13) Describe the texture and pattern of hair in the image.

(14) What is the texture of depicted hairstyle

(15) Does the depicted hairstyle is straight or wavy or curly or kinky?

(16) Can you describe the overall �ow and directionality of strands?

(17) Could you describe the bang of depicted hairstyle including its

directionality and texture

(18) Describe the main geometric features of the hairstyle depicted

in the image

(19) Is the length of hairstyle buzz cut, pixie, ear length, chin length,

neck length, shoulder length, armpit length or mid-back length?

(20) Describe actors with similar hairstyle type.

(21) Does the haistyle cover any parts of the face? Write which

exactly parts.

(22) In what ways is this hairstyle a blend or combination of other

popular hairstyles?

(23) Could you provide the most closest types of hairstyles from

which this one could be blended?

(24) How adaptable is this hairstyle for various occasions (casual,

formal, athletic)?

(25) How is this hairstyle perceived in di�erent social or professional

settings?

(26) Are there historical �gures who were iconic for wearing this

hairstyle?

(27) Could you describe the partition of this hairstyle if it is visible?

Di�usion prior.Weuse the ElucidatingDi�usionMoldel (EDM) [Kar-

ras et al. 2022] for the denoiser D. We apply HAAR [Sklyarova et al.

2023b] di�usion prior on low-resolution samples from T and de�ne

them as TLR or y to have the same notation as in [Karras et al. 2022].

At each iteration we obtain a noised input: x = y + n · f , where

n ∼ N(0, I), and f is a noise strength. We then predict a denoised

input:

D(x, f) = 2skip (f) · x + 2out (f) · F
(

2in (f) · x, 2noise (f)
)

, (14)

where the 2skip, 2out, 2in and 2noise are part of pre-conditioning

approach proposed in [Karras et al. 2022], which improves the ro-

bustness of D to the low noise strength f , and F is a neural network.

Our training objective also follows [Karras et al. 2022]:

Ldi� = E y,f,n

[

_di� (f) ·


D(x, f) − y




2

2

]

, (15)

where _di� (f) is a weighting function, and the expectation is ap-

proximated via sampling. Di�erent from Neural Haircut [Sklyarova

et al. 2023a] instead of sampling noise randomly, we �rst decrease

it with time from max to min level and then start sampling ran-

domly. Also, we use a conditional di�usion model HAAR [Sklyarova

et al. 2023b]. To increase the strength of the prior, we propose to do

several denoising steps.
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Fig. 7. Sample strands reconstructions from Strands400 dataset.
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Fig. 8. Sample scans from Strands400 dataset and the corresponding reconstructions.
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Strands-400: t-SNE of 768D Embeddings. 
 Captions are the LLaVA answers to: 
 What is the type of depicted hairstyle?
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Fig. 9. The distribution of hair length in the Strands400 dataset. The captions are collected from the answers of a VQA model (LLaVA [Li et al. 2023]) a�er

showing the rendered shading of the frontal and back views of the 3D scans in Strands400. The locations correspond to the t-SNE [Van der Maaten and

Hinton 2008] over BLIP embeddings [Li et al. 2022] of the LLaVA answers. The colors are calculated via K-Means [Ahmed et al. 2020].
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Strands-400: t-SNE of 768D Embeddings. 
 Captions are the LLaVA answers to: 
 Does the depicted hairstyle is straight or wavy or curly or kinky? 
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Fig. 10. The distribution of hair waviness in the Strands400 dataset. The captions are collected from the answers of a VQA model (LLaVA [Li et al. 2023]) a�er

showing the rendered shading of the frontal and back views of the 3D scans in Strands400. The locations correspond to the t-SNE [Van der Maaten and

Hinton 2008] over BLIP embeddings [Li et al. 2022] of the LLaVA answers. The colors are calculated via K-Means [Ahmed et al. 2020].
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